

Lecture Notes in Computer Science 3425
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rémi Bastide Philippe Palanque
Jörg Roth (Eds.)

Engineering
Human Computer
Interaction and
Interactive Systems

Joint Working Conferences EHCI-DSVIS 2004
Hamburg, Germany, July 11-13, 2004
Revised Selected Papers

13

Volume Editors

Rémi Bastide
LIIHS-IRIT, Université Toulouse I
Place Anatole France, 31042 Toulouse Cedex, France
E-mail: bastide@irit.fr

Philippe Palanque
LIIHS-IRIT, Université Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex, France
E-mail: palanque@irit.fr

Jörg Roth
Universität Hagen
Praktische Informatik II
Universitätsstr. 1, 58084 Hagen, Germany
E-mail: Joerg.Roth@Fernuni-hagen.de

Library of Congress Control Number: 2005928449

CR Subject Classification (1998): H.5.2-3, H.5, I.3, D.2, H.3, H.4, K.4, F.3

ISSN 0302-9743
ISBN-10 3-540-26097-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26097-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11431879 06/3142 5 4 3 2 1 0

Preface

As its name suggests, the EHCI-DSVIS conference has been a special event, merging
two different, although overlapping, research communities: EHCI (Engineering for
Human-Computer Interaction) is a conference organized by the IFIP 2.7/13.4 working
group, started in 1974 and held every three years since 1989. The group’s activity is
the scientific investigation of the relationships among the human factors in computing
and software engineering.

DSVIS (Design, Specification and Verification of Interactive Systems) is an annual
conference started in 1994, and dedicated to the use of formal methods for the design
of interactive systems. Of course these two research domains have a lot in common,
and are informed by each other’s results. The year 2004 was a good opportunity to
bring closer these two research communities for an event, the 11th edition of DSVIS
and the 9th edition of EHCI. EHCI-DSVIS was set up as a working conference
bringing together researchers and practitioners interested in strengthening the
scientific foundations of user interface design, specification and verification, and in
examining the relationships between software engineering and human-computer
interaction.

The call for papers attracted a lot of attention, and we received a record number of

submissions: out of the 65 submissions, 23 full papers were accepted, which gives an
acceptance rate of approximately 34%. Three short papers were also included. The
contributions were categorized in 8 chapters:

Chapter 1 (Usability and Software Architecture) contains three contributions which
advance the state of the art in usability approaches for modern software engineering.
Bonnie John and her colleagues discuss that, in contrast to other software quality
attributes such as performance, reliability and maintainability, usability is not usually
tackled at the software architecture level. Their contribution is to propose usability-
supporting architectural patterns, assorted with sample solutions. The second paper,
by Brinkman et al., proposes three usability measures designed to be applied in a
component-based environment. These measures can be objective, based on event logs,
or subjective, obtained through questionnaires. An experimental study assessing the
value of these measures is also described. The third paper, by Folmer and her
colleagues, also deals with the relationships between usability and software
architecture. They show how explicit evaluation of usability during architectural
design may reduce the risk of building a system that fails to meet its usability
requirements and may prevent high costs incurring adaptive maintenance activities
once the system has been implemented.

Chapter 2 is devoted to issues regarding task modelling, which is a traditional topic
of choice for both the EHCI and DSVIS series of conferences. The paper by Dittmar
et al. investigates the slow adoption of task modelling by software practitioners. A
thorough examination of the leading-edge tools for task modelling reveals how this
situation can be improved by better integration of scenario-based design elements.
The work of Clerckx et al. investigates the improvement that can be brought to usual
task, environment and dialogue models by tackling the new application domain of

VI Preface

context-sensitive user interfaces. The paper by Eicholz et al. explores the relationships
between task modelling and workflow, or business process modelling.

Chapter 3 is concerned with the “browsing and searching” application domain,
which is of high industrial relevance considering the current interest in Web-based
applications. Ormerod et al. present new browser concepts to support the sharing of
digital photographs and also report on the combined use of ethnographic,
experimentation and design methods they used for their project. Gonçalves and Jorge
propose a new classification scheme for document retrieval systems, where users “tell
a story” about their document, in order to make the later retrieval of the document
more natural.

Chapter 4 deals with model-based approaches. It is made up of six contributions,
making it the longest chapter of the book, witness to the fact that the definition and
use of models is at the core of the EHCI-DSVIS community. Campos and Nunes, in
this chapter’s first paper, emphasize the need for a better integration of models and
tools. They present a new UI specification language bridging the gap between
envisioned user behavior and concrete user interfaces. Macías and Castells bring the
field of programming-by-example to the domain of Web-based applications by
detecting iteration patterns in user behavior and generating a programmatic
representation of a user’s actions. Navarre et al. integrate two different notations in
order to offer a tool-supported approach for the prototyping of advanced multimodal
applications. Limbourg and his colleagues apply their USIXML language to show
how a user interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these levels.
The chapter is concluded by two short contributions: In the paper by Schaefer et al., a
novel dialogue model for the design of multimodal user interfaces is proposed.
Ziegler and Specker conclude by proposing the use of “Navigation Patterns,” pattern
systems based on structural mappings.

Chapter 5 is devoted to a rapidly developing application domain, ubiquitous
computing. Borkowski et al. propose several software tools with the assorted
interaction techniques to develop multisurface computer-augmented environments.
Evreinov and his colleagues explore the use of vibro-tactile interaction, especially
useful for new mobile devices such as palmtop computers.

Chapter 6 is called “Bridging Viewpoints”: this refers to an ongoing activity of the
IFIP 2.7/13.4 working group, which is to find ways to reconcile the fundamental
paradigms of user-centered design and software engineering. For instance, Blandford,
Green and Connel analyze the misfits between the user’s conceptualization of the
domain and device with which they are working and the conceptualization
implemented within those systems. Barbosa et al. discuss the role of an enhanced
extended lexicon as a shared communicative artefact during software design. They
describe how it may act as an interlingua that captures the shared understanding of
both stakeholders and designers. López-Jaquero et al. contribute a short paper on a
design process for adaptive interfaces.

Chapter 7 is concerned with the emerging application domain of plastic and
adaptive interfaces. Increasingly often, the same application has to be delivered on
widely different platforms, ranging from a complete workstation to a PDA or a cell
phone. Clearly, advances in design approaches are needed to avoid redesigning the
user interface from scratch for each platform. Dobson’s work is concerned with laying
out such principles, in particular for pervasive computing systems. Calvary and her

Preface VII

colleagues present a software widget explicitly dealing with plasticity of the user
interface. Gilroy and Harrison propose the incorporation of interaction style into
abstract UI specification, in order to accommodate with different UI platforms.
Correani et al. present a new version of the TERESA tool supporting flexible
development of multidevice interfaces.

Chapter 8 (Groupware) concludes the book with two papers, both concerned with
supporting collaborative software construction. Wu and Graham present the Software
Design Board, a prototype collaborative design tool supporting a variety of styles of
collaboration and facilitating transitions between them. Gutwin et al. explore ways to
improve group awareness in collaborative software design.

The conference was held in the beautiful, quiet and secluded Tremsbüttel Castle,

near Hamburg, Germany, providing a studious atmosphere propitious to after-hours
discussion. As usual for the EHCI conference series, the discussion that followed each
paper presentation was transcribed, revised and appended to the edited version of the
paper. From these, the reader may catch a glimpse of the lively debates that were held
at the conference.

Rémi Bastide
Philippe Palanque

Jörg Roth

Programme Committee

Conference Chairs
Rick Kazman SEI, Carnegie Mellon University, USA
Philippe Palanque LIIHS-IRIT, France

Programme Committee Chairs
Rémi Bastide LIIHS-IRIT, France
Nick Graham Queen’s University, Kingston, Canada
Jörg Roth University of Hagen, Germany

Programme Committee Members
Len J. Bass SEI, Carnegie Mellon University, USA
Ann Blandford University College London, UK
Annie Chabert GPS Pilot, France
Stéphane Chatty Intuilab, France
Joëlle Coutaz Université Joseph Fourier, France
Anke Ditmar University of Rostock, Germany
Alan Dix Lancaster University, UK
Gavin Doherty Trinity College, Dublin, Ireland
Peter Forbrig University of Rostock, Germany
Phil Gray University of Glasgow, UK
Morten Borup Harning Open Business Innovation, Denmark
Michael Harrison University of York, UK
Rob Jacob Tufts University, USA
Bonnie John HCII, Carnegie Mellon University, USA
Chris Johnson University of Glasgow, UK
Joaquim Jorge Instituto Superior Técnico, Lisbon, Portugal
Reed Little SEI, Carnegie Mellon University, USA
Quentin Limbourg Catholic University of Louvain, Belgium
Panos Markopoulos University of Eindhoven, The Netherlands
Laurence Nigay Université Joseph Fourier, France
Nuno Jardim Nunes Universidade da Madeira, Portugal
Fabio Paternò ISTI-CNR, Italy
Oscar Pastor Universidad Politécnica de Valencia, Spain
Greg Phillips Royal Military College, Canada
Chris Roast Sheffield Hallam University, UK
Daniel Salber CWI, The Netherlands
Kevin Schneider University of Saskatchewan, Canada
Helmut G. Stiegler STI Consulting, Germany
Halvard Trætteberg NTNU, Norway
Claus Unger University of Hagen, Germany
Jean Vanderdonckt Université Louvain-La-Neuve, Belgium
Leon Watts UMIST, UK
.

Table of Contents

Usability
Bringing Usability Concerns to the Design of Software Architecture.......................... 1

B.E. John, L. Bass, M.-I. Sanchez-Segura, R.J. Adams
Empirical Usability Testing in a Component-Based Environment:

Improving Test Efficiency with Component-Specific Usability Measures........... 20
W.-P. Brinkman, R. Haakma, D.G. Bouwhuis

Software Architecture Analysis of Usability .. 38
E. Folmer, J. van Gurp, J. Bosch

Task Modelling
Support for Task Modeling – A “Constructive” Exploration 59

A. Dittmar, P. Forbrig, S. Heftberger, C. Stary
DynaMo-AID: A Design Process and a Runtime Architecture for

Dynamic Model-Based User Interface Development.. 77
T. Clerckx, K. Luyten, K. Coninx

Using Task Modelling Concepts for Achieving Adaptive Workflows 96
C. Eichholz, A. Dittmar, P. Forbrig

Browsing and Searching
Mixing Research Methods in HCI: Ethnography Meets Experimentation

in Image Browser Design.. 112
T.C. Ormerod, J. Mariani, N.J. Morley, T. Rodden, A. Crabtree,

J. Mathrick, G. Hitch, K. Lewis
“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 129

D. Gonçalves, J. Jorge

Model-Based Approaches
CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 146

P.F. Campos, N.J. Nunes
Finding Iteration Patterns in Dynamic Web Page Authoring 164

J.A. Macías, P. Castells
Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts

of Multimodal Interactive Systems ... 179
D. Navarre, P. Dragicevic, P. Palanque, R. Bastide, A. Schyn

USIXML: A Language Supporting Multi-path Development of User Interfaces..... 200
Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. López-Jaquero

A Novel Dialog Model for the Design of Multimodal User Interfaces..................... 221
R. Schaefer, S. Bleul, W. Mueller

Navigation Patterns – Pattern Systems Based on Structural Mappings 224
J. Ziegler, M. Specker

XII Table of Contents

Ubiquitous Computing
Spatial Control of Interactive Surfaces in an Augmented Environment 228

S. Borkowski, J. Letessier, J.L. Crowley
Manipulating Vibro-Tactile Sequences on Mobile PC ... 245

G. Evreinov, T. Evreinova, R. Raisamo

Bridging Viewpoints
Formalising an Understanding of User-System Misfits.. 253

A. Blandford, T.R.G. Green, I. Connell
Supporting a Shared Understanding of Communication-Oriented Concerns

in Human-Computer Interaction: A Lexicon-Based Approach........................... 271
S. Diniz Junqueira Barbosa, M. Selbach Silveira,

M. Greco de Paula, K. Koogan Breitman
A Seamless Development Process of Adaptive User Interfaces

Explicitly Based on Usability Properties... 289
V. López-Jaquero, F. Montero, J.P. Molina, P. González,

A. Fernández-Caballero

Plastic and Adaptive Interfaces
More Principled Design of Pervasive Computing Systems 292

S. Dobson, P. Nixon
Towards a New Generation of Widgets for Supporting Software Plasticity:

The “Comet” ... 306
G. Calvary, J. Coutaz, O. Dâassi, L. Balme, A. Demeure

Using Interaction Style to Match the Ubiquitous User Interface to the
Device-to-Hand... 325
S.W. Gilroy, M.D. Harrison

Supporting Flexible Development of Multi-device Interfaces.................................. 346
F. Correani, G. Mori, F. Paternò

Groupware
The Software Design Board: A Tool Supporting Workstyle Transitions in

Collaborative Software Design ... 363
J. Wu, T.C.N Graham

Supporting Group Awareness in Distributed Software Development 383
C. Gutwin, K. Schneider, D. Paquette, R. Penner

Author Index .. 399

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 1-19, 2005.
 IFIP International Federation for Information Processing 2005

Bringing Usability Concerns to the Design of Software
Architecture1

Bonnie E. John1, Len Bass2, Maria-Isabel Sanchez-Segura3, Rob J. Adams1

1 Carnegie Mellon University, Human-Computer Interaction Institute, USA
{bej, rjadams}@cs.cmu.edu

2 Carnegie Mellon University, Software Engineering Institute, USA
ljb@sei.cmu.edu

3 Carlos III University of Madrid, Computer Science Department, Spain
misanche@inf.uc3m.es

Abstract. Software architects have techniques to deal with many quality
attributes such as performance, reliability, and maintainability. Usability,
however, has traditionally been concerned primarily with presentation and not
been a concern of software architects beyond separating the user interface from
the remainder of the application. In this paper, we introduce usability-
supporting architectural patterns. Each pattern describes a usability concern that
is not supported by separation alone. For each concern, a usability-supporting
architectural pattern provides the forces from the characteristics of the task and
environment, the human, and the state of the software to motivate an
implementation independent solution cast in terms of the responsibilities that
must be fulfilled to satisfy the forces. Furthermore, each pattern includes a
sample solution implemented in the context of an overriding separation based
pattern such as J2EE Model View Controller.

1. Introduction

For the past twenty years, software architects have treated usability primarily as a
problem in modifiability. That is, they separate the presentation portion of an
application from the remainder of that application. This separation makes it easier to
make modifications to the user interface and to maintain separate views of application
data. This is consistent with the standard user interface design methods that have a
focus on iterative design – i.e. determine necessary changes to the user interface from
user testing and modify the system to implement these changes. Separating the user
interface from the remainder of the application is now standard practice in developing
interactive systems.

Treating usability as a problem in modifiability, however, has the effect of
postponing many usability requirements to the end of the development cycle where
they are overtaken by time and budget pressures. If architectural changes required to

1 This work supported by the U. S. Department of Defense and the NASA High Dependability

Computing Program under cooperative agreement NCC-2-1298.

2 B.E. John et al.

implement a usability feature are discovered late in the process, the cost of change
multiplies. Consequently, systems are being fielded that are less usable than they
could be.

Recently, in response to the shortcomings of relying exclusively on separation as a
basis for supporting usability, several groups have identified specific usability
scenarios that are not well supported by separation, and have proposed architectural
solutions to support these scenarios [2,3,5,6,11]. In this paper, we move beyond
simply positing scenarios and sample solutions by identifying the forces that conspire
to produce such scenarios and that dictate responsibilities the software must fulfill to
support a solution. Following Alexander [1], we collect these forces, the context in
which they operate, and solutions that resolve the forces, into a pattern, in this case a
usability-supporting architectural pattern.

In the next section, we argue that software architects must consider more than a
simple separation-based pattern in order to achieve usability. We then discuss why we
are focusing on forces and why the forces that come from prior design decisions play
a special role in software creation. In section 4, we describe our template for these
patterns and illustrate it with one of the usability scenarios previously identified by
several research groups. We also comment on the process for creating these patterns.
Finally, we conclude with how our work has been applied and our vision of future
work.

2. Usability Requires More than Separation

The J2EE Model-View-Controller (J2EE-MVC) architectural pattern [12], appears in
Fig. 1. This is one example of a separation based pattern to support interactive
systems. The model represents data and functionality, the view renders the content of
a model to be presented to the user, and the controller translates interactions with the
view into actions to be performed by the model. The controller responds by selecting
an appropriate view. There can be one or more views and one controller for each
functionality.

The purpose of this pattern is explained by Sun as follows [12]: “By applying the
Model-View-Controller (MVC) architecture to a JavaTM 2 Platform, Enterprise Edition
(J2EETM) application, you separate core business model functionality from the
presentation and control logic that uses this functionality. Such separation allows
multiple views to share the same enterprise data model, which makes supporting
multiple clients easier to implement, test, and maintain.” Modifications to the
presentation and control logic (the user interface) also become easier because the core
functionality is not intertwined with the user interface. A number of such patterns
have emerged since the early 1980s including the original Smalltalk MVC and
Presentation Abstraction Control (PAC) [8] and they have proven their utility and
have become common practice.

Bringing Usability Concerns to the Design of Software Architecture 3

Model
- Encapsulates application state
- Responds to state queries
- Exposes application functionality
- Notifies views of changes

View
- Renders the models
- Requests updates from models
- Sends user gestures to controllers
- Allows controllers to select view

Controller
- Defines application behavior
- Maps user actions to model updates
- Selects view for response
- One for each functionality

State query

Change Notification

View Selection

User Gestures

Change
State

Method Invocations

Events

Fig. 1. J2EE-MVC structure diagram (adapted from [12]).

The problem, however, is that achieving usability means more than simply getting the
presentation and control logic correct. For example, consider cancelling the current
command, undoing the last command, or presenting progress bars that give an
accurate estimate of time to completion. Supporting these important usability
concerns requires the involvement of the model as well as the view and the controller.
A cancellation command must reach into the model in order to terminate the active
command. Undo must also reach into the model because, as pointed out in [10],
command processing is responsible for implementing undo and command processing
is carried out in the model in J2EE-MVC. Accurate time estimates for progress bars
depend on information maintained in the model. This involvement of multiple
subsystems in supporting usability concerns is also true for the other separation based
patterns. Thus, usability requires more than just separation.

3. The Forces in Usability-Supporting Architectural Patterns

The patterns work pioneered by Christopher Alexander in the building architecture
domain [1] has had a large impact on software engineering, e.g. [8,10]. Following
Alexander’s terminology, a pattern encompasses three elements: the context, the
problem arising from a system of clashing forces, and the canonical solution in which
the forces are resolved. The concept of forces and their sources plays a large role in
defining the requirements that a solution must satisfy.

As we mentioned above, previous work [2,3,5,6,11] focused on identifying
usability scenarios not well served by separation and providing an example solution,
architectural or OOD. These solutions did indeed support the scenarios, but included
design decisions that were not dictated by, nor traceable to, specific aspects of the
scenarios. In the work presented here, this lack of traceability is remedied by
Alexander’s concept of forces.

4 B.E. John et al.

Figure 2 depicts the high-level forces acting on a system of people and machines
to accomplish a task. In general, forces emanate from the organization that causes the
task to be undertaken.

User´s Organizational Settings

Task in an Environment

System

Forces

Forces

Benefits

Fig. 2. Forces influencing the solution and benefits of the solution.

That is, the organization benefits from efficiency, the absence of error, creativity, and
job satisfaction, to varying degrees, forcing the people to behave and the machines to
be designed to provide these benefits. The costs of implementing, or procuring,
software systems that provide such benefits is balanced against the value of those
benefits to the organization. Although the balance is highly dependent on the specific
organization and will not be discussed further, our work provides a solid foundation
for determining costs, benefits, and the link between them.

User´s Organizational Settings

Task in an Environment

Forces

System

Users

Human
desires and
capabilities

Software

Benefits
realized
when the

solution is
provided

State of the
software

General
responsibilities

Specific Solution (more
detail): e.g., architecture,

software tactics

Forces

Forces

Forces

Previous
design

decisions

Forces
Benefits

Fig. 3. Forces impacting the software architecture.

Bringing Usability Concerns to the Design of Software Architecture 5

Figure 3 gives more detail about the forces acting on the software that is the object of
design. In addition to the general organizational forces that put value on efficiency,
the reduction of errors and the like, there are specific forces placed on the design of a
particular software application, which may conflict or converge, but are eventually
resolved in a design solution. These forces have several sources: the task the software
is designed to accomplish and the environment in which it exists, the desires and
capabilities of humans using the software, the state of the software itself, and prior
design decisions made in the construction of the software in service of quality
attributes other than usability (e.g., maintainability, performance, security).

The first three sources of forces, task and environment, human, and software state,
combine to produce a general usability problem and a set of general responsibilities
that must be satisfied by any design purporting to solve the problem. These
responsibilities can serve as a checklist when evaluating an existing or proposed
software design for its ability to solve a given usability problem.

Combining these general responsibilities with the forces exerted by prior design
decisions produces a specific solution, that is, an assignment of responsibilities to new
or existing subsystems in the software being designed. If we assume, for example, the
common practice of using an overall separation-based architectural pattern for a
specific design, the choice of this pattern introduces forces that affect any specific
solution. In this sense, our usability-supporting architectural patterns differ from other
architectural patterns in that most other patterns are presented as if they were
independent of any other design decisions that have been made.

We now turn to the elements of a usability-supporting architectural pattern,
illustrated with an example.

4. A Template for Usability-Supporting Architectural Patterns:
Example & Process

Table 1 presents a template for a usability-supporting architectural pattern, containing
the context, the problem, and both a general solution and a specific solution. This
template is based on the concepts in Alexander’s patterns [1], past experiences
teaching architectural support for usability problems [6,11], and usability evaluation
of the pattern format itself. For example, the forces are listed in columns according to
their source under the Problem section of the template. Each row of forces is resolved
by a general responsibility of the software being designed. Even though the
responsibilities constitute the General Solution, we place them in the rows occupied
by the forces that they resolve because this spatial configuration emphasizes the
traceability of responsibilities back to the forces. In the Specific Solution we repeat
the general responsibilities rather than simply pointing to them, because it is easier for
the designer to read the text of the general responsibility in proximity to the prior
design decisions than to continually switch between different sections of the pattern
template. As with the general responsibilities, the rows in the Specific Solution
provide a traceability lacking in our previous presentations of similar material.

6 B.E. John et al.

Table 1. Usability-supporting architectural pattern template.

Name: The name of the pattern
Usability Context

Situation: A brief description of the situation from the user’s perspective that
makes this pattern useful
Conditions on the Situation: Any conditions on the situation constraining when
the pattern is useful.
Potential Usability Benefits: A brief description of the benefits to the user if the
solution is implemented. We use the usability benefit hierarchy from [3,5] to
express these benefits.

Problem General solution
Forces exerted
by the
environment and
the task. Each
row contains a
different force

Forces exerted
by human
desires and
capabilities.
Each row
contains a
different force.

Forces exerted by
the state of the
software. Each
row contains a
different force.

Responsibilities of
the general
solution that
resolve the forces in
the row.

Specific Solution
Responsibilities
of general
solution
(repeated from
the General
Solution column)

Forces that
come from
prior design
decisions

Allocation of
responsibilities to
specific
components.

Rationale justifying
how this assignment
of responsibilities to
specific modules
satisfy the problem

Component diagram of specific solution
Sequence diagram of specific solution
Deployment diagram of specific solution (if necessary)

4.1 Cancellation: An Example of a Usability-Supporting Architectural Pattern

Consider the example of canceling commands. Cancellation is an important usability
feature, whose value is well known to UI specialists and users alike, which is often
poorly supported even in modern applications. This example shows the extent to
which a usability concern permeates the architecture. Space does not permit us to
include a completed pattern for this example, so we will illustrate specific points with
selected portions of the pattern.

Usability Context. Table 2 contains the Name and the Usability Context portions of
the usability-supporting architectural pattern for canceling commands. The Situation
briefly describes the pattern from the point of view of the user, similar to the situation
in other pattern formats. However, the Conditions section provides additional
information about when the pattern is useful in the usability context. For example,
cancellation is only beneficial to users when the system has commands that run longer
than a second. With faster commands, users do not get additional benefit from
cancellation over simply undoing a command after it has completed. The loci of

Bringing Usability Concerns to the Design of Software Architecture 7

control may also appear in the Condition section. In our example, the cancellation
may be initiated by the user or by the software itself in response to changes in the
environment. The last section in the usability context is the Potential Usability
Benefits to the user if the solution is implemented in the software. Quantifying these
benefits will depend on the particular users, tasks, and organizational setting and is
beyond the scope of this paper. However, the list of potential benefits and their
rationale is a starting point for a cost/benefit analysis of providing the solutions in the
pattern. The benefits are cast in terms of the benefit hierarchy given in [3,5] ranging
from efficiency, to supporting non-routine behavior (i.e., problem-solving, creativity,
or learning), to user confidence and comfort. The ability to cancel commands has the
potential to benefit each of these categories.

The Problem and General Solution

Table 2. Usability context of the Cancelling Commands pattern.

Name: Cancelling Commands
Usability Context

Situation: The user issues a command then changes his or her mind, wanting
to stop the operation and return the software to its pre-operation state. It doesn’t
matter why the user wants to stop; he or she could have made a mistake, the
system could be unresponsive, or the environment could have changed.
Conditions of the Situation: A user is working in a system where the software
has long-running commands, i.e., more than one second.
The cancellation command can be explicitly issued by the user, or through
some sensing of the environment (e.g., a child’s hand in a power car window).

Potential Usability Benefits:
A. Increases individual user effectiveness

A.1 Expedites routine performance
A.1.2 Reduces the impact of routine user errors (slips) by allowing

users to revoke accidental commands and return to their task
faster than waiting for the erroneous command to complete.

A.2 Improves non-routine performance
A.2.1 Supports problem-solving by allowing users to apply

commands and explore without fear, because they can always
abort their actions.

A.3 Reduces the impact of user errors caused by lack of knowledge
(mistakes)
A.3.2 Accommodates mistakes by allowing users to abort commands

they invoke through lack of knowledge and return to their task
faster than waiting for the erroneous command to complete.

B. Reduces the impact of system errors
B.2 Tolerates system errors by allowing users to abort commands that

aren’t working properly (for example, a user cancels a download
because the network is jammed).

C. Increases user confidence and comfort by allowing users to perform
without fear because they can always abort their actions.

Sections of the pattern are the heart of this paper’s contribution to the research in
usability and software architecture. Previous research jumped from a general scenario,

8 B.E. John et al.

like that in our Situation section, directly to a short list of general responsibilities and
an architectural solution [2,3,5] or to detailed design solution [6] using the expertise
of the authors. Considering the forces is a step forward in codifying the human-
computer interaction and software engineering expertise that was tacit in the previous
work. Making tacit knowledge explicit provides a rationale for design
recommendation, increases the understanding of the software engineers who use these
patterns to inform their design, and provides a basis for deciding to include or exclude
any specific aspect of the solution.

The Problem is defined by the system of forces stemming from the task and
environment, recurring human desires and relevant capabilities, and the state of the
software itself. These forces are arranged in columns and rows, a portion of which is
shown in Table 3 for Cancelling Commands. Each row of conflicting or converging
forces is resolved by a responsibility of the software, presented in the rightmost
column of Table 3. These responsibilities constitute a General Solution to the
problem.

The first row in the Problem and General Solution records the major forces that
motivate the general usability situation. In our example, the facts that networks and
other environmental systems beyond the software are sometimes unresponsive, that
humans make mistakes or change their minds but do not want to wait to get back to
their tasks, and that the software itself is sometimes unresponsive dictate that the
software provide a means to cancel a command. The subsequent rows list other forces
that come into play to dictate more specific responsibilities of the software. Some
forces are qualitative and some are quantitative. For example, the middle of Table 3
shows a quantified human capability force that produces a performance responsibility;
the software must acknowledge the reception of a cancel command within 150 ms and
in a manner that will be perceived by the user [2]. These forces encapsulate decades
of human performance research and provide specific performance and UI design
guidance in a form that is usable and understandable by software designers.

In some rows, the forces converge and the responsibility fulfills the needs of the
different sources of force. For example, in the second row of Table 3, both the
environment and the human are unpredictable in their need for the cancellation
function. The responsibilities that derives from these needs, that the system always be
listening for the cancellation request and that is always be collecting the necessary
data to perform a cancellation, solve both these compatible forces. Sometimes the
forces conflict, as in part of the last row of Table 3, where the user wants the
command to stop but the software is unresponsive. The responsibility must then
resolve these opposing forces, in this case, going outside the software being designed
to the system in which it runs.

Process of Creating the Problem and General Solution. Our process of creating the
entries in the Problem and General Solution columns begins by examining prior
research in usability and software architecture.

Bringing Usability Concerns to the Design of Software Architecture 9

Table 3. Portion of the Problem and General Solution for Cancelling Commands.

Problem General solution
Forces exerted
by the
environment &
task.

Forces exerted
by human
desires and
capabilities.

Forces exerted
by the state of
the software.

General
responsibilities
of the software.

Networks are
sometimes
unresponsive.

Sometimes changes
in the environment
require the system
to terminate

Users slip or
make mistakes,
or explore
commands and
then change their
minds, but do not
want to wait for
the command to
complete.

Software is
sometimes
unresponsive

Must provide a
means to cancel a
command

No one can predict
when the
environment will
change

No one can
predict when the
users will want to
cancel commands

 Must always listen
for the cancel
command or
environmental
changes.

Must be always
listening and
gathering the
actions related to
the command being
invoked.

 User needs to
know that the
command was
received within
150 msec, or they
will try again.

The user can be
assumed to be
looking at the
cancel button, if
this is how they
canceled the
command

People can see
changes in color
and intensity in
their peripheral
vision as well as
in their fovea.

 Must acknowledge
the command
within 150 msec.

Acknowledgement
must be appropriate
to the manner in
which the
command was
issued. For
example, if the user
pressed a cancel
button, changing
the color of the
button will be seen.
If the user used a
keyboard shortcut,
flashing the menu
that contains that
command could be
detected in
peripheral vision.

10 B.E. John et al.

Table 3. Portion of the Problem and General Solution for Cancelling Commands (continued).

Problem General solution
Forces exerted
by the
environment &
task.

Forces exerted by
human desires and
capabilities.

Forces exerted
by the state of
the software.

General
responsibilities
of the software.

EITHER The command
itself is responsive

The command
should cancel
itself regardless of
the state of the
environment

 User
wants the
command
to stop

OR The command
itself is not
responsive or has
not yet been
invoked

An active portion
of the system must
ask the
infrastructure to
cancel the
command, or
The infrastructure
itself must provide
a means to kill the
application (e.g.,
task manager on
Windows, force
quit on MacOS)
(These
requirements are
independent of the
state of the
environment.)

Collaborating
processes may
prevent the
command from
canceling
promptly

 The command
has invoked
collaborating
processes

The collaborating
processes must be
informed of the
cancellation of the
invoking
command (these
processes have
their own
responsibilities
that they must
perform in
response to being
informed).

From the previously documented scenarios we can read, or infer, forces from the task
and environment or human desires and capabilities, and sometimes from the state of
the software itself. From previously enumerated responsibilities, we uncover tacit
assumptions about the forces they are resolving. From prior solutions, additional
general responsibilities can sometimes be retrieved. We list all these forces in the
appropriate columns and the responsibilities that resolve them.

Bringing Usability Concerns to the Design of Software Architecture 11

This preliminary table then becomes the framework for further discussion around
what we call considerations. Considerations are recurring forces, or variations in
forces, that cut across multiple scenarios. The considerations we have found to be
useful involve issues of feedback to the user, time, initiative, and scope.

With any interactive system, there is always a consideration of feedback to the
user. The user wants to be informed of the state of the software to make best use of
their time, to know what to do next, perform sanity checks, trouble-shoot and the like.
There are several types of feedback in almost every pattern: acknowledgement of the
user’s action, feedback on the progress of software actions, and feedback on the
results of software actions. The need for each of these types of feedback is forces in
the human needs and capability column. In Table 3, this consideration shows up in the
third row.

The time consideration involves forward-looking, current, and backward-looking
issues of time. One forward-looking consideration is the issue of persistence. Does the
pattern involve any objects that must persist over time? If so, there are often issues of
storing those objects, naming them, finding them later, editing them, etc. (This
consideration can also be thought of as a need for authoring facilities). A current time
issue is whether the pattern involves a process that will be operating concurrently with
human actions. If so, how will the human’s actions be synchronized at an effective
time for both the software and the human? An example of a backward-looking time
consideration occurs in the cancelling command pattern (not included in the portion
of the pattern in Table 3). What state should the software roll back to? In most
applications the answer is clearly “the state before the last command was issued.”
However, in systems of collaborating applications or with consumable resources, the
answer becomes less clear. An extreme example of this consideration for a system-
level undo facility can be found in the examination of system administrators by
Brown and Patterson [7].

The initiative consideration involves which entity can control the interaction with
the software being designed. In the cancelling commands pattern, initiative comes
from several places. One normally thinks of a cancel command being deliberately
instigated by the user. However, it is also possible that the environment can change,
initiating the equivalent of a cancel command to the software. For example, the
software that controls an automobile window lifter should stop the window rising if
the driver presses a button (user’s initiative), or if a child’s hand is about to be trapped
(system’s initiative).

The scope consideration asks whether a problem is confined to the software being
designed or concerns other aspects of the larger system. In the cancelling commands
example, a larger scope is evident in the last two rows in Table 3 when considering
responsibilities when the software is unresponsive and when there are collaborating
processes.

Thus, the combination of mining prior research in usability and software
architecture and asking the questions associated with considerations, allow the
definition of the forces and responsibilities that resolve them. The general
responsibilities constitute a general solution to the problem created by the forces.
Some pattern advocates would eschew our process of defining responsibilities
because the solution is generated, not recognized as an accepted good design used
repeatedly in practice. We believe that these general responsibilities have value
nonetheless because (1) they serve as requirements for any specific solution, and (2)

12 B.E. John et al.

many of the usability problems we have examined are not consistently served in
practice as yet, so no widely accepted solution is available.

Specific Solution. The specific solution is derived from the general responsibilities
and the forces that come from prior design decisions. Usability-supporting
architectural patterns differ from other architecture patterns in that they are neither
overarching nor localized. Patterns such as client-server, layers, pipe and filter, and
blackboard [8] tend to dominate the architecture of the systems in which they are
used. It may be that they only dominate a portion of the system but in this case, they
are usually encapsulated within a defined context and dominate that context. Other
patterns such as publish-subscriber, forward-receiver, and proxy [8] are local in how
they relate to the remainder of the architecture. They may impose conditions on
components with which they interact but these conditions do not seriously impact the
actions of the components.

Usability-supporting architectural patterns are not going to be overarching. One
does not design a system, for example, around the support for cancelling commands.
The support for this usability feature must be fit into whatever overarching system
designs decisions are made to facilitate the core functionality and other quality
attributes of the system. Usability-supporting architectural patterns are also not local,
by definition. They involve multiple portions of the architecture almost regardless of
what the initial design decisions have been made. Cancel, for example, ranges from a
requirement to listen for user input (at all times), to freeing resources, to knowing
about and informing collaborators of the cancellation request. All these
responsibilities involve different portions of the architecture.

When presenting a specific solution, then, there are two choices – neither
completely satisfactory.
1. Present the solution independent of prior design decisions. That is, convert the

general responsibilities into a set of components and assign the responsibilities to
them, without regard for any setting. A specific solution in this form does not
provide good guidance for architects who will come to the usability supporting
architectural patterns after having made a number of overarching design decisions.
For example, if the J2EE-MVC pattern is used as the overarching pattern, then a
listener for the cancel command is decoupled from the presentation of feedback to
indicate acknowledgement of the command. If the PAC pattern is used, then a
listener would be part of the presentation and would also be responsible for
feedback.

2. Present the solution in the context of assumed prior design decisions. That is,
assume an overarching pattern such as J2EE-MVC or PAC and ensure that the
specific solution conforms to the constraints introduced by this decision. This
increases the utility of the specific solution for those who are implementing within
the J2EE-MVC context but decreases the utility for those implementing within
some other context.
We have tried both solutions when we have presented earlier versions of this

material, without finding a completely satisfactory solution. However, common
practice in interactive system development currently uses some form of separation of
the interface from the functionality. Therefore demonstrating the interplay of general
responsibilities with a separation-based overarching architecture is a necessity to

Bringing Usability Concerns to the Design of Software Architecture 13

make contact to current practice. Given the popularity of J2EE-MVC, we present our
specific solution in that context.

For our cancel example, the forces caused by a prior design decision to use J2EE-
MVC govern the assignment of function to the model objects, the view objects, or to
the control objects (Figure 1). Any new responsibilities added by the usability
problem must adhere to the typical assignments in J2EE-MVC. Thus, responsibilities
that interact with the user must reside in the view, responsibilities that map user
gestures to model updates or define application behavior or select views must reside
in controller objects, and responsibilities that store state or respond to state queries
must reside in models.

Table 4. Row of specific solution that concerns the general responsibility of always listening
for the cancel command or environmental changes

Specific Solution
Responsibilities

of general
solution. i.e.,
requirements

Forces exerted by
prior design

decisions

Allocation of
responsibilities to

specific
components

Rationale

Must always
listen for the
cancel command
or environmental
changes.

In J2EE-MVC, user
gestures are
recognized by a
controller

J2EE-MVC is
neutral about how to
deal with
environmental
sensors

Listener component
is a controller. It must

 run on an
independent
thread from any
model.

 receive user
gestures that are
intended to invoke
cancel.

 receive
environmental
change
notification that
require a cancel.

Since the command
being cancelled may be
blocked and preempting
the Listener, the
Listener is assigned to
a thread distinct from
the one used by the
command.

Since J2EE-MVC is
neutral with respect to
environmental sensors,
we chose to listen for
the environmental
sensors in the same
controller that listens for
user gestures that
request cancellation
(the Listener)

Table 4 shows a small portion of the Specific Solution for cancelling commands
in J2EE-MVC, resolving the general responsibilities with the prior design decisions.
For easy reading, the general responsibilities, i.e., requirements of the specific
solution are repeated in the first column of the Specific Solution. In Table 4, we’ve
chosen to illustrate the responsibility of always listening for the cancel command or
environmental changes that signal the need for cancellation. This general
responsibility was the first responsibility in the second row of Table 3. The next
column contains those forces exerted by the prior design decisions that apply to the
general responsibility in the same row. The fact that J2EE-MVC controllers recognize
user gestures is one such force. That J2EE-MVC does not mention environmental
sensors is listed as a force, but its inclusion simply records that J2EE-MVC does not
exert a force on this point. The third column resolves these forces by further
specifying the general responsibilities and allocating them to specific components in

14 B.E. John et al.

the overarching architecture. In this case, a new controller entitled the Listener is
assigned the specific responsibilities that fulfil the general responsibility. The last
column provides additional rational for this allocation, for example, that since J2EE-
MVC does not specify a component for environmental sensors, we chose to use the
same controller as that listening for user requests to cancel.

After allocating all general responsibilities, all the new components and their
responsibilities, and all new responsibilities assigned to old components of the
overarching architecture can be collected into a specification for implementation. For
example, when the remainder of the complete Specific Solution table (not shown) is
considered, the Listener is responsible for

 always listening for a user’s request to cancel,
 always listening for external sensor’s request for cancellation (if any), and
 informing the Cancellation Manager (a model) of any cancellation request.

A component diagram of our specific solution is given in Figure 4. The View,
Controller and Active Command (model) and Collaborating Processes (if any) are the
components associated with J2EE-MVC under normal operations, without the facility
to cancel commands. The results of the analysis in the complete Specific Solution
table (not shown) added several new components. The Listener has already been
described.

Prior-State-
Manager
:Model

:Controller

Cancellation-
Manager
:Model

Listener
:Controller

:View Active-
Command
:Model

Collaborating-
Process
:Model

Prior-State-
Manager
:Model

Prior-State-
Manager
:Model

:Controller:Controller

Cancellation-
Manager
:Model

Cancellation-
Manager
:Model

Listener
:Controller
Listener
:Controller

:View:View Active-
Command
:Model

Active-
Command
:Model

Collaborating-
Process
:Model

Collaborating-
Process
:Model

Fig. 4. Component diagram for the specific solution.

The Cancellation Manager and Prior State Manager are new models fulfilling the
other general and specific responsibilities of cancelling commands. Because dynamic
behaviour is important for the cancel command we also use two different sequence
diagrams. The first (Figure 5) shows the sequence of normal operation with a user
issuing a command to the software. This figure represents the case in which:

 The user requests a command
 The command can be cancelled

The command saved its state prior to execution using the Prior State Manager. The
sequence diagram in Figure 6 represents the case in which:

 The user requests cancellation of an active command
 The current command is not blocked

Bringing Usability Concerns to the Design of Software Architecture 15

 The prior state was stored
 Time of cancellation will be between 1 and 10 seconds. Change cursor shape

but progress bars are not needed.
 It is not critical for the task that the cancellation be complete before another

user action is taken
 All resources are properly freed by the current command.
 Original state is correctly restored.

Fig. 5. Sequence diagram of normal operation, before cancel is requested.

:User
:View Listener

:Controller
Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

press
cancel
button send cancel

request cancel active
command

change cursor shape

acknowledge
user’s

command

estimates cancel
time between 1

and 10 secs
(busy cursor

needed)

are you alive?

yes

return original state

original state

release
resources

exiting
x restore cursor

:User
:View Listener

:Controller
Active-
Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

press
cancel
button send cancel

request cancel active
command

change cursor shape

acknowledge
user’s

command

estimates cancel
time between 1

and 10 secs
(busy cursor

needed)

are you alive?

yes

return original state

original state

release
resources

exiting
x restore cursor

Fig. 6. Sequence diagram of canceling.

5. Experience with Usability-Supporting Architectural Patterns

We have presented the cancel example (although not this pattern of forces and their
link to responsibilities) to professional audiences several times (e.g., [11]). After each
presentation, audience members have told anecdotes about their experiences with

:User
:View :Controller Active-

Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

normal
operation normal

operation
invoke

register

save current state

:User
:View :Controller Active-

Command
:Model

Prior-State-
Manager
:Model

Cancellation-
Manager
:Model

normal
operation normal

operation
invoke

register

save current state

16 B.E. John et al.

implementing cancellation. One professional told us about the difficulty of adding
cancel after initial implementation, confirming the utility of having a set of commonly
encountered usability problems that can be considered early in design. Another
professional told us that his company had included the ability to cancel from the
beginning, but had not completely analyzed the necessary responsibilities and each
cancellation request left 500MB of data on the disk. This anecdote confirms the utility
of having a detailed checklist of general responsibilities that must be fulfilled with
sufficient traceability and rationale to convince developers of their importance.

We have also applied a collection of about two dozen usability-supporting
architectural patterns ([3,5], again, prior to our inclusion of forces) in several real-
world development projects. As part of their normal software architecture reviews,
development groups have considered such patterns as Supporting Undo, Reusing
Information, Working at the User’s Pace, Forgotten Passwords, Operating
Consistently across Views, Working in an Unfamiliar Context, Supporting
International Use, and several different types of Feedback to the User. Discussions of
these scenarios and their associated architectural recommendations allowed these
development groups to accommodate usability concerns early in the design process.

6. Conclusions

Our major conclusion is that software architects must pay attention to usability while
creating their design. It is not sufficient to merely use a separation based pattern such
as MVC and expect to deliver a usable system.

Furthermore, we have shown that usability problem can be considered in light of
several sources of forces acting in the larger system. These forces lead to general
responsibilities, i.e., requirements, for any solution to the problem. Because the
solutions to these usability situations do not produce overarching patterns and yet are
also not localized, additional forces are exerted by design decisions made prior to the
consideration of the usability situation. Finally, we have proposed a template that
captures the different forces and their sources and provides a two level solution
(general and specific), as well as substantial traceability and rationale.

We visualize a collection of usability-supporting architectural patterns formatted
as we have described. These could be embodied in a Handbook of Usability for
Software Architects that could be used in whatever architecture design and review
processes employed by a development team. For example, as part of an Architectural
Tradeoff Analysis Method review [9], the Usability Context of each pattern could be
examined by the stakeholders to determine its applicability to their project. The
usability specialists and software architects could then work together to determine the
risks associated with particular architecture decisions and whether the benefits of
supporting the pattern in the context of that project exceed the costs. They could use
the general responsibilities to verify that their adaptation of the specific solution
satisfies all of the forces acting in their context. The raw material for the production
of such a handbook is in place. About two dozen usability scenarios exist with explicit
solutions, at different levels, documented by several research groups. Half a dozen of
these have been augmented with forces and responsibilities using the template
proposed here [4]. We believe that publication of such a handbook would make a

Bringing Usability Concerns to the Design of Software Architecture 17

significant contribution to improving the usability of fielded systems because the
concept of forces resolved by responsibilities provides a traceability and rationale
surpassing previous work.

References

1. Alexander, C., Ishikawa, S., and Silvernstein, M. A Pattern Language, Oxford University
Press, New York, 1997.

2. Bass, L. and John, B. E. Supporting the CANCEL Command Through Software
Architecture, CMU/SEI-2002-TN-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2002.

3. Bass, L. and John, B. E. “Linking Usability to Software Architecture Patterns through
general scenarios”, Journal of System and Software, 66, Elsevier, 2003, pp. 187-197.

4. Bass, L., John, B. E., Juristo, N., and Sanchez-Segura, M. Tutorial "Usability-Supporting
Architectural Patterns" in Proceedings of the 26th International Conference on Software
Engineering, IEEE Computer Society, May 23-28, 2004, Edinburgh, Scotland.

5. Bass, L., John, B. E. and Kates, J. Achieving Usability Through Software Architecture,
CMU/SEI-TR-2001-005 Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, (2001). Available for download at
http://www.sei.cmu.edu/publications/documents/01.reports/01tr005.html

6. Bosch, J. and Juristo, N. Tutorial "Designing Software Architectures for Usability" in
Proceedings of the 25th International Conference on Software Engineering, IEEE
Computer Society, May 3-10, 2003, Portland, Oregon, USA.

7. Brown, A. B. and Patterson, D. A., “Undo for Operators: Building an Undoable E-mail
Store” Proceedings of the 2003 USENIX Annual Technical Conference, San Antonio, TX,
June 2003.

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Pattern-Oriented
Software Architecture: A System Of Patterns, Volume 1. John Wiley & Sons Ltd., New
York, 1996.

9. Clements, P., Kazman, R., and Klein, M. Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley, Reading. MA, 2001.

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995.

11. John, B. E. and Bass, L., Tutorial, “Avoiding "We can't change THAT!": Software
Architecture and Usability” In Conference Companion of the ACM Conference on
Computer-Human Interaction, 2002, 2003, 2004.

12. Sun Microsystems, Inc, “Java BluePrints, Model-View-Controller,” September 2003,
http://java.sun.com/blueprints/patterns/MVC-detailed.html. Copyright 2000-2003 Sun
Microsystems. All rights reserved.

Discussion

[Michael Harrison] I'm not familiar with this work, so forgive the naive question. It
sounds like you've got a generic notion of CANCEL and you're trying to situate that
within a particular context and within a particular application. Is this correct?

[Bonnie John] No, we're looking more at generic contingencies, conditions
and forces. We're trying to say "if you look at your specific situation and
these fit" then you have to take the architectural guidance into account.

18 B.E. John et al.

[Tom Omerod] You raised the question of how you know when you're done
producing one of these descriptions. For example, you've ended up with about twenty
responsibilities for CANCEL alone. How do you know when you're done?

[Bonnie John] We don't have a good answer for that question. In essence, we
have to keep presenting the description to new audiences, and comparing it
to new systems, and seeing if we get new insights. In the particular case of
CANCEL, we've only added one responsibility in the last year so we think
we may be close to done. However, the fact that there is no reliable way of
telling whether you're done is quite disconcerting.

[Tom Ormerod] Maybe it would be better if you were exploring several issues in
parallel, rather than just CANCEL.

[Bonnie John] Yes, and we are. In fact we have documented six of these
usability architectural issues, which is helping us to derive general patterns
(as shown in the paper).

[Willem-Paul Brinkman] Does usability prescribe only one software architecture, or
are only responsibilities mentioned? Because if there is only one right architectural
solution, then you can simply start checking the architecture.

[Bonnie John] No, absolutely not. This is why we particularly like having the
forces and responsibilities in our descriptions --- they give insight into how
to fit the solution into the rest of the system's architecture (which will
necessarily vary based on many other concerns).

[Gerrit van der Veer] You are labelling parts of your solutions as patterns. This
suggests that it is design knowledge that can be shared. Doesn't this imply that you
need examples of each pattern, as well as counter-patterns, to provide the generic
design knowledge? Is there an intention or effort to collect these (which is a huge
effort)?

[Bonnie John] Yes. We're working with Dick Gabriel at Sun, president of
Hillside Group, to get better integrated with the patterns community. With
the community's help we're hoping to make a collective effort to document
both these kinds of patterns.

[Jurgen Ziegler] Developers may get overwhelmed with the large number of
requirements, particularly since there are also many more requirements that are not
usability-related. Wouldn't it help to show developers different examples of
architectures that fulfil your requirements to different degrees?

[Bonnie John] Yes, absolutely. For example, one thing we're doing is
keeping track of products that don't do cancel correctly or completely, and
how. We haven't documented all of these yet.

[Nick Graham] In designing an architecture you have two basic options --- either
attempt to anticipate all cases, or make the architecture sufficiently resilient to change
that it is possible to modify afterwards. In the first case you may end up with an
architecture that's bloated by features that may never be used. In the second, you seem
to be back with the original "you can't change that" problem. Where does your
approach really fit in?

Bringing Usability Concerns to the Design of Software Architecture 19

[Bonnie John] We use risk assessment techniques to assess which
requirements are really likely to come up. Since these requirements aren't
core to the system function (in some sense they're peripheral) we're hoping
that with these checklists people can consider stuff like this early in the
process. We're not trying to anticipate everything, but rather things that we
know get left out. The kinds of things we're considering are general problems
that recur frequently and that reach deep into the architecture.

[Michael Harrison] Have you looked at whether people are actually helped by the
forces and responsibilities?

[Bonnie John] We've done one really in-depth project with this approach
using a Mars Rover control board with NASA. They say that the
architectural suggestions helped them, but now we're looking at the actual
code and the user performance data that NASA collected to get a view
beyond their subjective evaluation. (However, this was before we had the
forces and responsibilities directly in our model.) We're also doing similar
things with some of our tutorial participants. The data is sparse so far. We're
conducting a controlled experiment to answer this question which we hope to
report on at ICSE and/or CHI 2005.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 20-37, 2005.
 IFIP International Federation for Information Processing 2005

Empirical Usability Testing in a Component-Based
Environment: Improving Test Efficiency with

Component-Specific Usability Measures

Willem-Paul Brinkman1, Reinder Haakma2, and Don G. Bouwhuis3

1 Brunel University, Uxbridge, Middlesex, UB8 3PH
United Kingdom

Willem.Brinkman@Brunel.ac.uk
2 Philips Research Laboratories Eindhoven, Prof. Holstlaan 4,

5656 AA Eindhoven, The Netherlands
Reinder.Haakma@Philips.com

3 Technische Universiteit Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

D.G.Bouwhuis@tue.nl

Abstract. This paper addresses the issue of usability testing in a component-
based software engineering environment, specifically measuring the usability of
different versions of a component in a more powerful manner than other, more
holistic, usability methods. Three component-specific usability measures are
presented: an objective performance measure, a perceived ease-of-use measure,
and a satisfaction measure. The objective performance measure is derived from
the message exchange between components recorded in a log file, whereas the
other measures are obtained through a questionnaire. The power of the
measures was studied in an experimental setting. Eight different prototypes of a
mobile telephone were subjected to usability tests, in which 80 subjects
participated. Analyses of the statistical power of these measures show that the
component-specific performance measure can be more powerful than overall
usability measures, which means fewer users are needed in a test.

1 Introduction

Instead of building an application from scratch, Component-Based Software
Engineering (CBSE) focuses on building artefacts from ready-made or self-made
components (e.g. pop-up menus, radio buttons, or more complex components such as
a spell checker or an email component). Current empirical usability measures do not
correspond well with this engineering approach. They do not measure the usability of
the individual component, but only its impact on the overall usability (e.g. number of
keystrokes, task duration, or questions about the overall ease of use and satisfaction).
This indirect way of measuring the usability of a component means that many
participants are needed in a usability test. We argue here that component-specific
usability measures can be more effective in measuring the usability of an individual
component, as they are more focused and therefore require fewer participants in a

Empirical Usability Testing in a Component-Based Environment 21

usability test. Several authors [9, 19] have suggested that component-specific
usability testing might be feasible. They argue that a component can be regarded as an
interactive system in its own right with its capacity of receiving input messages,
providing users with feedback, and having its own internal state.

In this paper we present a usability testing method that can be used to compare
different versions of a component on their usability. The method consists of three
component-specific usability measures: an objective performance measure, a
perceived ease-of-use measure, and a satisfaction measure. Before describing the
testing method, the following section gives an overview of the general characteristics
of component architectures on which this method can be applied. After describing the
method, an experimental evaluation will be presented, in which the statistical power
of the component-specific measures is examined. This section is followed by a
discussion of the limitations of the method and its relationship with other empirical
usability evaluation methods.

2 Component-Based Interactive Systems

The following three subsections introduce the concepts: control loop, interaction
component, and layer. With these concepts it is possible to identify interactive system
architectures on which the testing method can be applied, such as the Model-View-
Controller (MVC) model [13], PAC (Presentation, Abstraction, Control) model [5]
and in particular the CNUCE agent model [17]. The generic architecture described
here is based on the ideas of the Layered Protocol Theory [19], which decomposes the
user-system interaction into different layers that can be designed and analysed
separately.

2.1 Control Loop

Central concepts in the Layered Protocol Theory are the control loop and the
accumulation of these control loops. The concept of control loop explains how
interaction between users and a system progresses. Interaction is regarded as an
exchange of messages between users and the system. Users send messages to the
system to change its state. The system sends messages to inform the users about its
state. This forms the basis of a negative feedback loop where users compare the
received system feedback with their internal mental representation of the state they
want the system to be in, the so-called reference value. If the reference value and
system feedback are not similar, the users may decide to send a message to the system
in an attempt to get it in the desired state. When the system receives the users’
message, it acts on it, and sends feedback to the users to inform them of the outcome,
which again triggers another cycle of the control loop. Once the system is in the
desired state, the need for sending messages stops. Therefore, the number of messages
sent by the users presents the effort users have made to control the system as each
user message indicates a cycle of the loop.

22 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

2.2 Architectural Elements

Interaction components define the elementary units of interactive systems, on which
behaviour-based evaluation is possible. An interaction component is a unit within an
application that can be represented as a finite state machine which directly, or
indirectly via other components, receives signals from the user. These signals enable
the user to change the state of the interaction component. Furthermore, the user must
be able to perceive or to infer the state of the interaction component. Therefore, an
interaction component should provide feedback. Without the possibility of perceiving
the state, the users’ behaviour is aimless. Next, it should have a changeable state. A
minute label of a radio alarm clock button is not an interaction component on its own
because users cannot change it. A behaviour-based measurement of the quality of this
label can only be made as part of an interaction component responsible for the minute
digits, whose state users can control.

Fig. 1. Front of a radio alarm clock.

The points where input and output of different interaction components are connected
demarcate the border between layers. An interaction component operates on a higher-
level layer than another interaction component, when the higher-level interaction
component receives its user messages from the other interaction component.

Figure 2 illustrates how these concepts can be used to describe a part of the
architecture of a radio alarm clock. The three interaction components on the lowest-
level layer are responsible for the time (Clock), the selection of the radio stations
(Radio Station), and the volume of the sound (Volume). These interaction
components receive messages from the users and they send their feedback via the
Display component or in case of the Volume component also via the Speaker. Besides
sending messages to users as part of their individual control loop, the Clock and
Radio Station interaction components also send messages upwards to the higher-level
Radio Receiver interaction component. This component fulfils its responsibility in its
control loop by sending feedback to the users via the Speak component.

Empirical Usability Testing in a Component-Based Environment 23

Volume
Radio
StationClock

Radio
receiver

{mode, hour,
minute, on/off}

{+, -}

{On/off}

{1,2,3,4,5,
<, >, set}

{radio frequency}

Display Speaker

{timer went off}

Fig. 2. Compositional structure of a radio alarm clock. The boxes represent components and the
arrows the flow of the message exchange between the components.

3 Testing Method

The testing method presented here can be used to test the relative usability difference
between two or more versions of a component while the other parts of the system
remain the same, e.g. two similar radio alarm clocks that only differ on the
implementation of the Radio Station component.

3.1 Test Procedure

The test procedure of the method roughly corresponds to the normal procedure of a
usability test. Subjects are observed while they perform the same task with different
versions of a system. The task is finished once subjects attain a specific goal that
would require them to alter the state of the interaction component under investigation.
In advance, subjects should be instructed to act as quickly as possible to accomplish
the given goal. As subjects perform the task, messages sent to the interaction
component are recorded in a log file. Once the subjects reach the goal, the recording

24 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

stops, since new user messages sent afterwards will probably be sent with a new goal
in mind.

3.2 Objective Performance Measure

Once the task is completed, the number of user messages received directly, or
indirectly via lower-level layers, by the individual versions of the interaction
component can be calculated from the log file. This number is put forward as a
component-specific performance measure. An earlier explorative study on the affect
of foreknowledge [2] indicated that the interaction component version that received
the fewest messages is the most usable one. The subjects had to go through the cycle
of the control loop less often. Therefore, the number of messages presents the
subjects’ effort to control the interaction component, provided that the subjects
attained only one goal.

The main advantage of the component-specific performance measure is its
potential statistical power, meaning that far less subjects are needed in a usability test
when data is analysed statistically. The need for a large number of subjects is often
one of the reasons why practitioners are unable to run a test because of the time and
the cost involved.

Most statistical books that describe statistical testing methods explain in depth the
concept of p-values but only devote a few paragraphs on power. Whereas the p-value
in a statistical test is related to the probability of making a type I, or , error (wrongly
rejecting the hypothesis when it is true; for example, predicting a performance
difference based on a test while in real life there is no performance difference
between two versions of a component) the power of a test is related to a type II, or ,
error (failing to reject the hypothesis when it is false). Consider the two distributions
in the upper part of Figure 3. The shaded region to the left of the rejection boundary
presents the likelihood of making a type error. The unshaded region on the right of
the boundary presents the statistical power of the test, defined as 1- . In the context
of a usability test the power presents the probability of finding a difference between
two versions of a component provided there is a difference. A traditional way of
increasing the power is by increasing the number of subjects in a test; making the
prediction of the distribution more reliable. Another way, however, is to increase the
precision of the measuring; making the measure more robust against outside
interfering factors, such as possible usability problems the subjects may or may not
encounter with other components in the system while completing a task. For
parametric statistical tests (e.g. t-test, or F-test) this means reducing the variance of
the sample distribution. Reducing the variance, or in other words making the sample
distribution more compact, will also reduce the p-value in a statistical test, because
the contrast between the two sample groups becomes clearer.

Empirical Usability Testing in a Component-Based Environment 25

Fig. 3. Performance comparison of two systems implemented with different versions of a
component. The variation in the number of keystrokes is larger than the variation in the number
of user messages received by the component under investigation, because the first also includes
variations caused when users interact with other components, whereas the latter only focuses on
the interaction with the relevant component.

The number of user messages a component received directly, or indirectly via lower-
level layers, can be a more powerful measure than an overall measure, such as the
number of keystrokes, as its variance is smaller. The number of messages received by
a component is less likely to be affected by problems located in other parts of the
system, whereas overall measures are. In the example with the radio alarm clock, the
likelihood that the Radio Station component will receive some extra messages
because some subjects have a problem with understanding the Clock component is
lower than the likelihood that these subjects make some additional key presses in
general. The additional variance, created as subjects try to control other interaction
components, is left out in the component-specific measure because of its specific
focus. This variance reduction can be apparent in the analysis of lower-level
interaction components, but this can apply to higher-level interaction components as
well. A low-level message does not always lead to a high-level message. For
example, users can still undo a wrong time setting, before the Clock component sends
a < timer went off > message upwards. Measuring the number of high-level messages
will be less affected by variations between subjects interacting with lower-level
components. Therefore, the effect of replacing a high-level interaction component
with another version can be more obvious in the number of high-level messages than
in the number of keystrokes.

The main advantage of making a test more powerful is that fewer samples
(subjects) are needed to detect a difference (if there is any) with the same reliability
(p-value). Fewer samples are needed because the likelihood of a type error is
smaller. The lower part of Figure 3 illustrates this point. The shaded region left of the
rejection boundary is smaller when samples are more concentrated.

26 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

3.3 Subjective Usability Measures

Besides the performance measures, the perceived usability, scaled by subjects, can be
used to evaluate the usability of the components. These component-specific questions
are expected to be more sensitive than overall usability questions because they help
the subjects to remember their control experience with a particular interaction
component [4]. The difference between a component-specific and an overall
questionnaire is that instead of the system, the name of the interaction component is
used in each question. Besides the name of the interaction component, a description, a
picture, or even a reference in the system of the interaction component can help to
support the subjects’ recollection.

Several questionnaires have been proposed in the literature to determine the overall
usability of an interactive system. The six ease-of-use questions of the Perceived
Usefulness and Ease-of-Use questionnaire [6] seems a suitable small set for a
component-specific measure. They make no reference to the system’s appearance and
are able to capture well-formed beliefs developed by individuals about the ease-of-use
after only a brief initial exposure [8]. The component-specific satisfaction questions
are taken from the Post-Study System Usability Questionnaire [15], one about how
pleasant an interaction component was, and one about how much subjects liked an
interaction component. Both the ease-of-use and satisfaction questions use a 7 points
answer scale.

4 Experimental Evaluation of the Testing Method

An experiment was conducted to study the method and to test the statistical power of
the proposed component-specific measures. The experiment compared prototypes
with variations in their usability. The use of predefined usability variations had to
emphasise the validity of the usability measures. By seeding known usability
problems into the prototypes, this experimental set-up ensured that the testing method
would identify actual usability problems, and limit uncertainty about whether the
measuring had anything to do with usability. In this experiment, all usability
variations addressed the complexity of dialogue structures that can be understood in
terms of the Cognitive Complexity Theory (CCT) [12]. This theory holds that the
cognitive complexity increases when users have to learn more rules.

4.1 Prototypes

A mobile telephone was chosen for the experiment because of its relatively complex
system architecture. Furthermore, some of the mobile telephones’ interaction
components are receptive to well-known and well-documented usability problems.
Three interaction components of a mobile telephone were manipulated (printed in
bold type in Figure 4). The three interaction components were responsible for the way
subjects could input alphabetic characters (Keypad), activate functions in the
telephone (Function Selector), and send text messages (Send Text Message).

Empirical Usability Testing in a Component-Based Environment 27

For each of these three interaction components two versions were designed. In one
version of the Function Selector (FS), the menu was relatively broad but shallow, i.e.
all eight options available within one stratum. In the other version, the menu was
relatively narrow but deep, i.e. a binary tree of three strata. Users tend to be faster and
make fewer errors in finding a target in broad menus than in deep menus [18]. In
terms of CCT, the deep menu structure requires the subjects to learn more rules to
make the correct choices when going through the deep menu structure. In the more
usable version of the Send Text Message (STM) component, the component guided
the subjects through the required steps. The less usable version left the sequence of
steps up to the subjects. All these steps were options presented as icons, which forced
the subjects to learn the icon-option mapping rules. Furthermore, they also had to
learn in which order to choose the options.

Voice
Mail

Telephone
Router

Send text
message

Read text
message

Read
address

list

Edit
Address

list

Read
Diary

Edit
Diary Stand-by Call

Keypad

Mode
Screen

Function
selector

Menu
Screen

Main
Screen

Screen Screen Keyboard Keyboard Screen

Function keys,
left key, right

key, menu key,
ok key, cancel

key

Backspace key0..9 keys,
* key, # key,
Mode key

Function request,
Ok, Cancel

Letter,
number,

cursor move

Mode
restriction

Mode

Letter

Characters,
Cursor

position,
STM menu
direction

Keyboard

Menu direction

Menu
icons

Mode
symbol

Characters,
cursor, STM
menu icons

Function request, Ok,
Cancel, letter, number,

cursor move, backspace
key, function results

Flow
redirection,

function
results

Fig. 4. The architecture of the Mobile telephones (bold interaction components were
manipulated in the experiment).

Finally, to enter letters, one keypad version used the Repeated-Key method, and the
other version a Modified-Model-Position method. The first is easier to use, because
the subjects had to learn one simple rule [7]. It involved having the subjects press the
key, containing the letter, the number of times corresponding to its ordinal position on
the key (e.g. one time on the “GHI” key for “G”). The other method involved having
subjects first press either “*” or “#” key, depending on whether the letter was in the
left or right position on the button label and nothing when the letter was in the middle.

28 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

This was followed by a press on the key containing the letter (e.g. “*” followed by
“GHI” for “G”).

Combining these versions led to eight different mobile telephone prototypes. The
experimental environment was programmed in Delphi 5, and included PC prototypes
of the eight mobile telephones, a recording mechanism to capture the message
exchange between the interaction components, and automatic procedure to administer
the questionnaire.

4.2 Procedure and Subjects

All 80 participating subjects were students of Technische Universiteit Eindhoven.
None of them used a mobile telephone on a daily or weekly basis1. The kinds of tasks
they had to perform with the mobile telephone were calling to someone’s voice-mail
system; adding a person’s name and number to the phone’s address list; and sending a
text message. The application automatically assigned the subjects to a prototype in a
random order. At the end of the experiment, subjects were asked to evaluate the
mobile telephone with the questionnaire on the computer. The computer gave the
questions in a random order. After the experiment, the subjects received NLG 22.50
(roughly €10) for their participation.

4.3 Results

The first step in the analysis phase was to conduct multivariate and univariate
analyses on the different measures (task duration, number of keystrokes, number of
messages received, overall ease-of-use, component-specific ease-of-use, overall
satisfaction and component-specific satisfaction). These analyses took as independent
variables the different versions of the FS, the Keypad, and the STM component. The
results of these analyses can be found in the appendix: Table 3 for the FS component,
Table 4 for the Keypad component, and Table 5 for the STM component. The results
show in which of the measures a significant effect could be found for the different
versions of the component.

Differences in the optimal task performance existed between the versions of the FS

and STM component. To compensate for these a priori differences, extra multivariate
analyses were performed on the corrected2 number of keystrokes and messages
received measures for the FS and STM component. The results of the analyses can be
found in the lower part of Table 3 and Table 5. Unfortunately, no direct way existed
to correct the other measures. Still, the corrected keystrokes measure seems an
appropriate indicator of how a corrected measure of the task duration would perform;
as the time to complete a task was highly correlated (0.91) with the number of
keystrokes.

1 The experiment was conducted in the autumn of 2000, when a large group of students did not

own or use a mobile telephone on a regular basis.
2 Any additional number of keystrokes or number of messages received created by differences

in the optimal task performance between prototypes was subtracted from these samples.

Empirical Usability Testing in a Component-Based Environment 29

In the second step of the analysis phase, the focus was on the statistical power of the
various measures. Because of the relative large sample size (80 subjects), the tests on
several measures had a statistical power that approximates to 1. If the experiment
were to be repeated, it is almost certain that a significant effect would be found again
in these measures. Therefore, a post-hoc power analysis was conducted to calculate
the likelihood that a significant difference was found if fewer subjects had
participated in the experiment. Various sample sizes were entered in G*Power, a
general power analysis program, with the effect size (2/(1- 2)) obtained from Tables
3, 4 and 5.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Number of subjects

Po
w

er

1. messages received
2. corrected messages received
3. task duration
4. keystrokes

5. corrected keystrokes
6. comp.-spec. ease-of-use
7. comp.-spec. satisfaction
8. overall eas-of-use
9. overall satisfaction

1
2
3
4
5
6
7

8

9

Fig. 5. Average probability that a measure finds a significant (= 0.05) effect for the usability
difference between the two versions of FS, STM, or the Keypad components.

Figure 5 presents the statistical power of the different measures averaged over the
tests of the three components. The number of messages received was more powerful
than the overall objective performance measures such as task duration and the number
of keystrokes. For example, if this experiment was set out to find a significant
difference with a 60% chance of detecting it, using the number of messages received
as a measure would require 16 subjects, whereas the task duration or the number of
keystrokes would require 40 subjects —a reduction of 60%.

The effectiveness of the objective component-specific measure is also confirmed
by discriminant analyses on the measures. A discriminant analysis does the opposite
from what an analysis of variance does. It takes a measure and analyses how well it
can predict to which prototype a subject was assigned in the experiment. For each
measure per component, a discriminant analysis fitted a linear function that gave the
highest number of correct classifications. The function classified the 80 subjects into
two groups, one for each version of the component. Although the fitted parameters of
the linear functions are less relevant in this context, the number of correct

30 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

classifications shows how useful a measure is to discriminate between two versions of
a component. In other words, how useful would a measure be in discriminating
between low and high usability?

Table 1. Number of correctly classified subjects out of a total of 80 subjects calculated by 18
discriminant analyses. The analyses took the versions of the component as the grouping
variable.

Grouping Variable
Type of Measure FS Keypad STM Total
Number keystrokesa 55** 52* 42 149
Number of messages received by
FS/keypad/STMa

71** 52* 63** 186

Ease of use mobile phone 52* 45 50* 147
Ease of use menu/keyboard/STM function 54** 51* 40 145
Satisfaction of mobile phone 45 45 48 138
Satisfaction menu/keyboard/STM function 51* 52* 44 147

Note. Binominal tests, H0: Number of correct classification = 40.
a Corrected for all a-priori differences between versions of the components.
* p. < .05. ** p. < .01

Table 1 shows the results of the of 18 discriminant analyses. Each analysis was
conducted with the versions of the component as a grouping variable. The measure
was the independent variable and the versions of the other two components were
control variables. The table also shows whether the number of correct classification
was significantly higher than the threshold of 40 subjects that on average would be
correctly classified by randomly allocating subjects to the groups. Only the linear
functions fitted on an objective component-specific measure (corrected number of
messages received by the related component) were effective across the three
components.

Table 2 shows the results of comparisons on the effectiveness, across the three
components, between functions fitted on overall and component-specific measures
when it comes to classifying subjects. These comparisons were done on six new
variables, two for each type of measure: an overall and component-specific one. A
score was assigned to these variables according to the number of times an individual
subject was correctly classified. For each subject, the score ranged from zero to three:
a zero for no correct classification, a one for one correct classification, a two for two
correct classifications, and a three if the versions of all the three components were
correctly predicted.

The analyses on the corrected number of keystrokes revealed that 62% (149/240)
of the classifications for the versions were correct. This was significantly lower than
the 78% correct classifications by functions fitted on the corrected number of
messages received. Again, to put the percentage into perspective, note that random
allocation would on average link 50% of the subjects with the correct version of the
component they had interacted with. Therefore, the relative effectiveness
improvement is 32% ((0.78-0.62)/(1-0.5)).

The post-hoc power analysis (Figure 5) indicated that the subjective component-
specific ease-of-use and satisfaction measures were on average more powerful than

Empirical Usability Testing in a Component-Based Environment 31

the subjective overall measures. However, the comparison between the results of the
discriminant analyses revealed no significant difference in the number of correct
classifications. Looking at Table 1, it seems that the subjective component-specific
measures were only ineffective in the case of the higher-level STM component. An
unclear reference to this component in the questions might have caused this.

Table 2. Results of Wilcoxon Matched-Pairs Signed-Ranks Tests between the number of
correct classification made by discriminant analyses on overall and component-specific
measures.

 Correctly classified
Type of Measure Overall Component-Specific N T p

Observed performance 62% 78% 37 3 <0.001
Perceived ease-of-use 61% 60% 62 30 0.907
Perceived satisfaction 58% 61% 61 27 0.308

5 Discussion

To summarize the results, both the power analyses and the discriminant analyses seem
to suggest that the objective components-specific measure was more effective than
overall measures such as the number of keystrokes. The power analyses also seem to
suggest that the subjective component-specific measures were more effective than
their overall counterparts. However, the discriminant analyses did not reveal a
difference for the subjective measures.

5.1 Limitations

The testing method assumes that the users have to spend the same amount of effort
each time they send a message on the level of the interaction component. When high-
level interaction components are tested, this assumption is reasonable between the
two versions, because the mediating low-level interaction components are the same.
However, when the lowest-level interaction components are tested, more attention
should be given to this point, as the effort may not be similar. A possible way to solve
this problem is by assigning individual weighting factors to the messages [3].

The total number of keystrokes could be more powerful than the component-
specific measure when the usability variation of one interaction component influences
the number of messages received by another interaction component. This can be
caused by three factors: the user, the environment, and the system architecture. For
instance, in the mobile telephones equipped with the Modified-Modal-Position
method, higher-level String components embedded in the STM and the Edit Address
List component (Figure 4) received unintended letters, which the subjects also had to
delete. An analysis of variance on the number of backspace messages showed this
measure as even more powerful than the number of messages received by the Keypad
component [2].

32 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

A more practical limitation is the assumption that instrumentation code can be
inserted in the software to record the message exchange, which may not always be
possible. Fortunately, software tools are being developed to cope with that. For
example, the iGuess tool [16] automatically inserts recording code into a Java
application without any need for access to the source code.

5.2 Other Empirical Evaluation Methods

Unit Testing. Focussing on the usability of a single component is not new. One of the
first usability testing papers presented at the first SIGCHI conference [1] focused on
specific components of the Xerox’s 8010 “Star” office workstation, such as text
selection, icon recognition and the selection of graphic objects. In these kinds of so-
called unit tests, users are asked only to perform a very limited task that requires
interaction with a particular component such as selecting text. For lower-level
components this is a powerful testing strategy, since it reduces the variation in the
data otherwise caused by the interaction with other components. The drawback is the
limited nature of these tasks, as users are not asked to perform the task in the context
of a larger, everyday task, such as writing a letter. It assumes that the usability of the
lower-level component will not be influenced by other components. However, factors
like memory load or inconsistency can create relations between the components that
influence the task performance [2]. Instead, applying component-specific usability
measures, which presumably are equally powerful, means that users can be asked to
perform complex tasks.

Sequential Data Analysis. Often, in sequential data analysis, only lower-level events
are recorded, which are first pre-processed into more abstract events before they are
analysed. However, these compound messages leave more room for discussion about
the system interpretation of the lower-level messages and therefore lack a direct
relation with the higher-level components. Extending the low-level messages log file
with the system’s state makes it possible to construct the system interpretation of
lower-level into higher-level messages. Still, it would require the analysis to envision
the system response to a low-level message when the system is in a particular state.
An example of such an approach can be found in the work of Lecerof and Paternò
[14].

Not Event-Based Usability Evaluations. Other usability evaluation methods, such as
thinking-aloud, cognitive walkthrough, and heuristic evaluations may in some cases
be quicker in assessing the usability of an entire user interface. However, they suffer
from a substantial evaluator effect in that multiple evaluators end up with different
conclusions when evaluating the same user interface [10]. Usability measures that can
be applied automatically leave very little room for such an effect.

Furthermore, current usability evaluation methods have also received criticism for
their ineffectiveness in finding real problems that lead to changes in a new version of

Empirical Usability Testing in a Component-Based Environment 33

a system [11]. The introduction of component-specific usability measures may help to
overcome this as they lead designers unambiguously to the part that should be
changed.

5.3 Exploitation of the Testing Method

In CBSE the creation and the deployment of a component are two independent
processes separated over time. In both processes, designers can conduct usability tests
and apply the component-specific testing method described in this paper. Identifying
and dealing with usability problems in the creation process has the advantage that
they do not have to be dealt with each time the component is deployed in a new
application. Testing the component in the creation process may require developing a
test bed as an actual application might not be available or even unknown when
developing a general component library for a specific development environment.

Usability testing once the application is assembled is also needed because only
then will it be possible to study the component in the context of the other components.
If only one version of each component is considered and the aim is to compare the
usability of the different components in a single application, the component-specific
subjective measures can still be useful. The component-specific performance
measure, however, cannot be applied directly since user effort to create messages on
different layers may not be the same. A combination of adding weight factors to the
messages and correcting for inefficiencies of the user’s interaction with higher and
lower components has been suggested [3] as a possible solution in that case.

6 Conclusions and Final Remarks

The current study confirms the possibility of testing the usability of individual
components, which can be applied in a CBSE environment. The direct benefit of the
method seems the statistical power of the component-specific measures. Usability
testing of individual components opens the door for sets of usable and re-usable
components. Applying these components will increase the chance that the final
system will also be usable. However, it will not guarantee this. Components can have
an impact on each other’s usability [2]. More research is needed to understand how
and when outside factors affect the usability of a component, and how system
developers should deal with this. Furthermore, the testing method also has the
potential for usability testing outside the laboratory. However, the component-specific
performance measure will need to be re-examined because now the evaluator sets the
users’ goal, which is inappropriate in normal field tests.

References

1. Bewley, W., Roberts, T.L., Schroit, D., Verplank, W.L.: Human factors testing in the design
of Xeror’s 8010 “Star” Office workstation. Proceedings of CHI'83. ACM Press, New York,
NY (1983) 72-77

34 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

2. Brinkman, W.-P. Is usability compositional? Doctoral dissertation. Technische Universiteit
Eindhoven, The Netherlands (2003)

3. Brinkman, W.-P., Haakma, R., Bouwhuis, D.G.: Usability testing of interaction components:
Taking the message exchange as a measure of usability. In Jacob, R.J.K., Limbourg, Q.,
Vanderdonckt, J. (eds.): Pre-Proceedings of CADUI'2004. Kluwer Academics, Dordrecht,
The Netherlands (2004) 159-170

4. Coleman, W.D., Williges, R.C., Wixon, D.R.: Collecting detailed user evaluations of
software interfaces. In Swezey, R.W., Post, T.J., Strother, L.B. (eds.): Proceedings of the
Human Factors Society - 29th Annual Meeting. Human Factors Society, Santa Monica, CA
(1985) 240-244

5. Coutaz, J.: PAC, an object oriented model for dialog design. In Bullinger, H.-J., Shackel, B.
(eds.): INTERACT’87. North-Holland, Amsterdam (1987) 431-436

6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Quarterly 13 (1989) 319-340

7. Detweiler, M.C., Schumacher, M.C., Gattuso, N.: Alphabetic input on a telephone keypad. In
Proceedings of the Human Factors Society 34th Annual Meeting. Human Factors Society,
Santa Monica, CA (1990) 212–216

8. Doll, W.J., Hendrickson, A., Deng, X.: Using Davis’s perceived usefulness and ease-of-use
instruments for decision making: A confirmatory and multigroup invariance analysis.
Decision Sciences 29 (1998) 839–869

9. Haakma, R.: Layered feedback in user-system interaction. Doctoral dissertation. Technische
Universiteit Eindhoven, The Netherlands (1998)

10.Hertzum, M., Jacobsen, N.E.: The evaluator effect: A chilling fact about usability evaluation
methods. Int. J. of Human-Computer Interaction 13 (2001) 421–443

11.John, B.E., Marks, S.J.: Tracking the effectiveness of usability evaluation methods.
Behaviour and Information Technology 16 (1997) 188-202

12.Kieras, D., Polson, P.G.: An approach to the formal analysis of user complexity. Int. J. of
Man-Machine Studies 22 (1985) 365-394

13.Krasner, G.E., Pope, S.T.: A cookbook for using the Model-View-Controller user interface
paradigm in Smalltask-80. Journal of object-oriented programming 1 (1988) 27-49

14.Lecerof, A., Paternò, F.: Automatic support for usability evaluation. IEEE Transactions on
Software Engineering 24 (1998) 863–888

15.Lewis, J.R.: IBM computer usability satisfaction questionnaires: Psychometric evaluation
and instructions for use. Int. J. of Human-Computer Interaction 7 (1995) 57-78

16.McLeod, I., Evans, H., Gray, P., Mancy, R.: Instrumenting bytecode for the production of
usage data. In Jacob, R.J.K., Limbourg, Q., Vanderdonckt, J. (eds.): Pre-Proceedings of
CADUI'2004. Kluwer Academics, Dordrecht, The Netherlands (2004) 185-196

17.Paternò, F.: Model-based design and evaluation of interactive applications. Springer,
London (2000)

18.Snowberry, K., Parkinson, S.R., Sisson, N.: Computer display menu. Ergonomics 26 (1983)
699-712

19.Taylor, M.M.: Layered protocols for computer-human dialogue. I: Principles. Int. J. of Man-
Machine Studies 28 (1988) 175-218

Empirical Usability Testing in a Component-Based Environment 35

Appendix: Results of Multivariate and Univariate Analyses of
Variance

Table 3. Results of two multivariate analyses and related univariate analyses of variance with
the version of the Function Selector as independent between-subjects variable.

 Mean df
Measure Broad Deep Hyp. Er. F p 2
Normal
 Joint measure — — 7 66 34.47 <0.001 0.80
 Time in seconds 947 1394 1 72 29.56 <0.001 0.29
 Number of keystrokes 461 686 1 72 37.72 <0.001 0.34
 Number of messages received 67 265 1 72 155.34 <0.001 0.68
 Ease of use mobile phone 5.5 4.8 1 72 11.86 0.001 0.14
 Ease of use menu 5.6 4.5 1 72 22.33 <0.001 0.24
 Satisfaction of mobile phone 4.4 3.8 1 72 4.25 0.043 0.06
 Satisfaction of menu 4.6 3.5 1 72 15.96 <0.001 0.18
Correcteda
 Joint measure — — 2 71 60.96 <0.001 0.63
 Number of keystrokes 437 602 1 72 20.27 <0.001 0.22
 Number of messages received 52 190 1 72 75.36 <0.001 0.51
aCorrected for all a-priori differences between versions of the components.

Table 4. Results of multivariate and related univariate analyses of variance with the version of
the Keypad as independent between-subjects variable.

 Mean df
Measure RK MMP Hyp. Er. F p 2
Normal
 Joint measure — — 7 66 4.05 0.001 0.30
 Time in seconds 872 1083 1 72 9.44 0.003 0.12
 Number of keystrokes 438 537 1 72 10.34 0.002 0.13
 Number of messages received 233 271 1 72 13.92 <0.001 0.16
 Ease of use mobile phone 5.3 5.0 1 72 1.07 0.305 0.02
 Ease of use keyboard 5.6 4.9 1 72 11.13 0.001 0.13
 Satisfaction of mobile phone 4.3 3.9 1 72 1.76 0.188 0.02
 Satisfaction of keyboard 4.6 3.8 1 72 8.97 0.004 0.11
Note. RK: Repeat-Key, MMP: Modified-Model-Position. Analyses on corrected measures are
not presented since these are practically the same.

36 W.-P. Brinkman, R. Haakma, and D.G. Bouwhuis

Table 5. Results of two multivariate analyses and related univariate analyses of variance with
the version of the STM component as independent between-subjects variable.

 Mean df

Measure
Simple Com

plex
Hyp. Er. F p 2

Normal
 Joint measure — — 7 66 18.16 <0.001 0.66
 Time in seconds 523 672 1 72 8.15 0.006 0.10
 Number of keystrokes 269 320 1 72 4.56 0.036 0.06
 Number of messages
received

12 49 1 72 74.18 <0.001 0.51

 Ease of use mobile phone 5.0 5.3 1 72 1.15 0.288 0.02
 Ease of use STM function 5.1 4.9 1 72 0.35 0.555 0.01
 Satisfaction of mobile phone 3.9 4.2 1 72 0.93 0.339 0.01
 Satisfaction of STM
function

3.9 3.8 1 72 0.26 0.614 0.01

Correcteda
 Joint measure — — 2 71 20.85 <0.001 0.37
 Number of keystrokes 249 289 1 72 2.30 0.134 0.03
 Number of messages
received

12 34 1 72 26.23 <0.001 0.27

aCorrected for all a-priori differences between versions of the components.

Discussion

[Claus Unger] If you have a set of component-specific measures in a system and then
decide to change your architecture, how can you move the measures across?

[Willem-Paul Brinkman] The assumption in this method is that we're only
varying one component at a time. However if you want to compare
components across very different architectures that's a much more difficult
problem. We don't address that with our method.

[Nick Graham] The measure that you're using is the number of messages going back
and forth. Wouldn't that tend to say that, for example, the vi editor is more usable than
MS Notepad. For example, in vi you can use a regular expression to make many
changes, whereas in Notepad you'd have to do each one manually.

[Willem-Paul Brinkman] The measures are based on participants really
performing tasks. A user who does not know vi might generate 1000
messages before they figure out how to make the change. In related areas,
we're also looking at assigning different weights to different kinds of
messages in the system.

[Bonnie John] A lot of usability errors seem to lie at component boundaries. Your
method doesn't seem to address that.

Empirical Usability Testing in a Component-Based Environment 37

[Willem-Paul Brinkman] If there is a component that bridges between others,
then you can analyse it there. However, if the bridge is made in the user's
mind then overall measures rather than component-specific measures will be
better. However, if there are mismatches between components, or one of the
components is occupying all the user's attention, then the method won't
necessarily find these errors.

[Bonnie John] I'm not sure that the questionnaires will allow people to give you valid
data. What is your feeling?

[Willem-Paul Brinkman] The questionnaires are difficult to apply, and in
fact we frequently see issues with vocabulary mismatch where the users don't
reliably understand which component we're talking about in the questions.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 38-58, 2005.
 IFIP International Federation for Information Processing 2005

Software Architecture Analysis of Usability

Eelke Folmer, Jilles van Gurp, Jan Bosch

University of Groningen, the Netherlands
mail@eelke.com, jilles@jillesvangurp.com, Jan.Bosch@cs.rug.nl

Abstract. Studies of software engineering projects show that a large number of
usability related change requests are made after its deployment. Fixing usability
problems during the later stages of development often proves to be costly, since
many of the necessary changes require changes to the system that cannot be
easily accommodated by its software architecture. These high costs prevent
developers from meeting all the usability requirements, resulting in systems
with less than optimal usability. The successful development of a usable
software system therefore must include creating a software architecture that
supports the right level of usability. Unfortunately, no documented evidence
exists of architecture level assessment techniques focusing on usability. To
support software architects in creating a software architecture that supports
usability, we present a scenario based assessment technique that has been
successfully applied in several cases. Explicit evaluation of usability during
architectural design may reduce the risk of building a system that fails to meet
its usability requirements and may prevent high costs incurring adaptive
maintenance activities once the system has been implemented.

1 Introduction

One of the key problems with many of today’s software is that they do not meet their
quality requirements very well. In addition, it often proves hard to make the necessary
changes to a system to improve its quality. A reason for this is that many of the
necessary changes require changes to the system that cannot be easily accommodated
by the software architecture [4] The software architecture, the fundamental
organization of a system embodied in its components, their relationships to each other
and to the environment and the principles guiding its design and evolution [12] does
not support the required level of quality.

The work in this paper is motivated by the fact that this also applies to usability.
Usability is increasingly recognized as an important consideration during software
development; however, many well-known software products suffer from usability
issues that cannot be repaired without major changes to the software architecture of
these products. This is a problem for software development because it is very
expensive to ensure a particular level of usability after the system has been
implemented. Studies [24,17] confirm that a significant large part of the maintenance
costs of software systems is spent on dealing with usability issues. These high costs
can be explained because some usability requirements will not be discovered until the
software has been implemented or deployed. This is caused by the following:

Software Architecture Analysis of Usability 39

 Usability requirements are often weakly specified.
 Usability requirements engineering techniques have only a limited ability to

capture all requirements.
 Usability requirements may change during development.

Discovering requirements late is a problem inherent to all software development and
is something that cannot be easily solved. The real problem is that it often proves to
be hard and expensive to make the necessary changes to a system to improve its
usability. Reasons for why this is so hard:
 Usability is often only associated with interface design but usability does also

depend on issues such as the information architecture, the interaction architecture
and other quality attributes (such as efficiency and reliability) that are all
determined by the software architecture. Usability should therefore also be realized
at the architectural level.

 Many of the necessary usability changes to a system cannot be easily be
accommodated by the software architecture. Some changes that may improve
usability require a substantial degree of modification. For example changes that
relate to the interactions that take place between the system and the user, such as
undo to a particular function or system wide changes such as imposing a consistent
look and feel in the interface.

The cost of restructuring the system during the later stages of development has proven
to be an order of magnitude higher than the costs of an initial development [4]. The
high costs spent on usability during maintenance can to an extent be explained by the
high costs for fixing architecture-related usability issues. Because during design
different tradeoffs have to be made, for example between cost and quality, these high
costs may prevent developers from meeting all the usability requirements. The
challenge is therefore to cost effectively usable software e.g. minimizing the costs &
time that are spent on usability.

Based upon successful experiences [18] with architectural assessment of
maintainability as a tool for cost effective developing maintainable software, we
developed architectural analysis of usability as an important tool to cost effectively
development usable software i.e. if any problems are detected at this stage, it is still
possible to change the software architecture with relative cheap costs. Software
architecture analysis contributes to making sure the software architecture supports
usability. Software architecture analysis does not solve the problem of discovering
usability requirements late. However, it contributes to an increased awareness of the
limitations the software architecture may place on the level of usability that can be
achieved. Explicit evaluation of software architectures regarding usability is a
technique to come up with a more usable first version of a software architecture that
might allow for more “usability tuning” on the detailed design level, hence,
preventing some of the high costs incurring adaptive maintenance activities once the
system has been implemented.

In [7] an overview is provided of usability evaluation techniques that can be used
during the different stages of development, unfortunately, no documented evidence
exists of architecture level assessment techniques focusing on usability. The
contribution of this paper is an assessment technique that assists software architects in

40 E. Folmer, J. van Gurp, and J. Bosch

designing a software architecture that supports usability called SALUTA (Scenario
based Architecture Level UsabiliTy Analysis).

The remainder of this paper is organized as follows. In the next section, the
relationship between software architecture and usability is discussed. Section 3
discusses various approaches to software architecture analysis. Section 4 presents an
overview of the main steps of SALUTA. Section 5 presents some examples from a
case study for performing usability analysis in practice and discusses the validation of
the method. Finally the paper is concluded in section 6.

2 Relationship Between Usability and Software Architecture

A software architecture description such as a decomposition of the system into
components and relations with its environment may provide information on the
support for particular quality attributes. Specific relationships between software
architecture (such as - styles, -patterns etc) and quality attributes (maintainability,
efficiency) have been described by several authors. [6,9,4]. For example [6] describes
the architectural pattern layers and the positive effect this pattern may have on
exchangeability and the negative effect it may have on efficiency.

Until recently [3,8] such relationships between usability and software architecture
had not been described nor investigated. In [8] we defined a framework that expresses
the relationship between usability and software architecture based on our
comprehensive survey [7]. This framework is composed of an integrated set of design
solutions such as usability patterns and usability properties that have a positive effect
on usability but are difficult to retrofit into applications because they have
architectural impact. The framework consists of the following concepts:

2.1 Usability Attributes

A number of usability attributes have been selected from literature that appear to form
the most common denominator of existing notions of usability:
 Learnability - how quickly and easily users can begin to do productive work with a

system that is new to them, combined with the ease of remembering the way a
system must be operated.

 Efficiency of use - the number of tasks per unit time that the user can perform
using the system.

 Reliability in use the error rate in using the system and the time it takes to recover
from errors.

 Satisfaction - the subjective opinions of the users of the system.

2.2 Usability Properties

A number of usability properties have been selected from literature that embody the
heuristics and design principles that researchers in the usability field consider to have
a direct positive influence on usability. They should be considered as high-level

Software Architecture Analysis of Usability 41

design primitives that have a known effect on usability and most likely have
architectural implications. Some examples:
 Providing Feedback - The system should provide at every (appropriate) moment

feedback to the user in which case he or she is informed of what is going on, that
is, what the system is doing at every moment.

 Consistency - Users should not have to wonder whether different words, situations,
or actions mean the same thing. Consistency has several aspects:
 Visual consistency: user interface elements should be consistent in aspect and

structure.
 Functional consistency: the way to perform different tasks across the system

should be consistent.
 Evolutionary consistency: in the case of a software product family, consistency

over the products in the family is an important aspect.

2.3 Architecture Sensitive Usability Patterns

A number of usability patterns have been identified that should be applied during the
design of a system’s software architecture, rather than during the detailed design
stage. This set of patterns has been identified from various cases in industry, modern
software, literature surveys as well as from existing (usability) pattern collections.
Some examples:
 Actions on multiple objects - Actions need to be performed on objects, and users

are likely to want to perform these actions on two or more objects at one time [26].
 Multiple views - The same data and commands must be potentially presented using

different human-computer interface styles for different user preferences, needs or
disabilities [5].

 User profiles - The application will be used by users with differing abilities,
cultures, and tastes [26].

Unlike the design patterns, architecturally sensitive patterns do not specify a specific
design solution in terms of objects and classes. Instead, potential architectural
implications that face developers looking to solve the problem the architecturally
sensitive pattern represents are outlined. For example, to facilitate actions on multiple
objects, a provision needs to be made in the architecture for objects to be grouped into
composites, or for it to be possible to iterate over a set of objects performing the same
action for each. Actions for multiple objects may be implemented by the composite
pattern [9] or the visitor pattern [9].

(Positive) relationships have been defined between the elements of the framework
that link architectural sensitive usability patterns to usability properties and attributes.
These relationships have been derived from our literature survey. The usability
properties in the framework may be used as requirements during design. For example,
if a requirements species, "the system must provide feedback”, we use the framework
to identify which usability patterns may be implemented to fulfill these properties by
following the arrows in Figure 1. Our assessment technique uses this framework to
analyze the architecture’s support for usability.

42 E. Folmer, J. van Gurp, and J. Bosch

Fig. 1. Usability Framework.

3 Software Architecture Assessment

The design and use of an explicitly defined software architecture has received
increasing amounts of attention during the last decade. Generally, three arguments for
defining an architecture are used [2]. First, it provides an artifact that allows
discussion by the stakeholders very early in the design process. Second, it allows for
early assessment of quality attributes [15,4]. Finally, the design decisions captured in
the software architecture can be transferred to other systems.
Our work focuses on the second aspect: early assessment of usability. Most
engineering disciplines provide techniques and methods that allow one to assess and
test quality attributes of the system under design. For example for maintainability
assessment code metrics [20] have been developed. In [7] an overview is provided of
usability evaluation techniques that can be used during software development. Some

Software Architecture Analysis of Usability 43

of the more popular techniques such as user testing [22], heuristic evaluation [21] and
cognitive walkthroughs [27] can be used during several stages of development.
Unfortunately, no documented evidence exists of architecture level assessment
techniques focusing on usability. Without such techniques, architects may run the risk
of designing a software architecture that fails to meet its usability requirements. To
address to this problem we have defined a scenario based assessment technique
(SALUTA).

The Software Architecture Analysis Method (SAAM) [14] was among the first to
address the assessment of software architectures using scenarios. SAAM is
stakeholder centric and does not focus on a specific quality attribute. From SAAM,
ATAM [15] has evolved. ATAM also uses scenarios for identifying important quality
attribute requirements for the system. Like SAAM, ATAM does not focus on a single
quality attribute but rather on identifying tradeoffs between quality attributes.
SALUTA can be integrated into these existing techniques.

3.1 Usability Specification

Before a software architecture can be assessed, the required usability of the system
needs to be determined. Several specification styles of usability have been identified
[19]. One shortcoming of these techniques [21,23,11] is that they are poorly suited for
architectural assessment.
 Usability requirements are often rather weakly specified: practitioners have great

difficulties specifying usability requirements and often end up stating: “the system
shall be usable” [19].

 Many usability requirements are performance based specified [19]. For example,
such techniques might result in statements such as “customers must be able to
withdraw cash within 4 minutes” or “80% of the customers must find the system
pleasant”.

Given an implemented system, such statements may be verified by observing how
users interact with the system. However, during architecture assessment such a system
is not yet available. Interface prototypes may be analyzed for such requirements
however we want to analyze the architecture for such requirements.

A technique that is used for specifying the required quality requirements and the
assessment of software architectures for these requirements are scenario profiles [18].
Scenario profiles describe the semantics of software quality attributes by means of a
set of scenarios. The primary advantage of using scenarios is that scenarios represent
the actual meaning of a requirement. Consequently, scenarios are much more specific
and fine-grained than abstract usability requirements. The software architecture may
then be evaluated for its support for the scenarios in the scenario profile. Scenario
profiles and traditional usability specification techniques are not interfering; scenarios
are just a more concrete instance of these usability requirements.

44 E. Folmer, J. van Gurp, and J. Bosch

3.2 Usage Profiles

A usage profile represents the required usability of the system by means of a set of
usage scenarios. Usability is not an intrinsic quality of the system. According to the
ISO definition [13], usability depends on:
 The users - who is using the product? (system administrators, novice users)
 The tasks - what are the users trying to do with the product? (insert order, search

for item X)
 The context of use - where and how is the product used? (helpdesk, training

environment)

Usability may also depend on other variables, such as goals of use, etc. However in a
usage scenario only the variables stated above are included. A usage scenario is
defined as “an interaction (task) between users, the system in a specific context of
use”. A usage scenario specified in such a way does not yet specify anything about
the required usability of the system. In order to do that, the usage scenario is related to
the four usability attributes defined in our framework. For each usage scenario,
numeric values are determined for each of these usability attributes. The numeric
values are used to determine a prioritization between the usability attributes.

For some usability attributes, such as efficiency and learnability, tradeoffs have to
be made. It is often impossible to design a system that has high scores on all
attributes. A purpose of usability requirements is therefore to specify a necessary level
for each attribute [19]. For example, if for a particular usage scenario learnability is
considered to be of more importance than other usability attributes (maybe because of
a requirement), then the usage scenario must reflect this difference in the priorities for
the usability attributes. The analyst interprets the priority values during the analysis
phase (section 4.3) to determine the level of support in the software architecture for
the usage scenario.

4 SALUTA

In this section we present SALUTA (Scenario based Architecture Level UsabiliTy
Analysis). SALUTA consists of the following four steps:
1. Create usage profile.
2. Describe provided usability.
3. Evaluate scenarios.
4. Interpret the results.

When performing an analysis the separation between these steps is not very strict and
it is often necessary to iterate over various steps. In the next subsections, however the
steps are presented as if they are performed in strict sequence.

4.1 Create Usage Profile

The steps that need to be taken for usage profile creation are the following:

Software Architecture Analysis of Usability 45

1. Identify the users: rather than listing individual users, users that are representative
for the use of the system should be categorized in types or groups (for example
system administrators, end-users etc).

2. Identify the tasks: Instead of converting the complete functionality of the system
into tasks, representative tasks are selected that highlight the important features of
the system. For example, a task may be “find out where course computer vision is
given”.

3. Identify the contexts of use: In this step, representative contexts of use are
identified. (For example. Helpdesk context or disability context.) Deciding what
users, tasks and contexts of use to include requires making tradeoffs between all
sorts of factors. An important consideration is that the more scenarios are evaluated
the more accurate the outcome of the assessment is, but the more expensive and
time consuming it is to determine attribute values for these scenarios.

4. Determine attribute values: For each valid combination of user, task and context of
use, usability attributes are quantified to express the required usability of the
system, based on the usability requirements specification. Defining specific
indicators for attributes may assist the analyst in interpreting usability requirements
as will be illustrated in the case study in section 5. To reflect the difference in
priority, numeric values between one and four have been assigned to the attributes
for each scenario. Other techniques such as pair wise comparison may also be used
to determine a prioritization between attributes.

5. Scenario selection & weighing: Evaluating all identified scenarios may be a costly
and time-consuming process. Therefore, the goal of performing an assessment is
not to evaluate all scenarios but only a representative subset. Different profiles may
be defined depending on the goal of the analysis. For example, if the goal is to
compare two different architectures, scenarios may be selected that highlight the
differences between those architectures. If the goal is to analyze the level of
support for usability, scenarios may be selected that are important to the users. To
express differences between usage scenarios in the usage profile, properties may be
assigned to scenarios, for example: priority or probability of use within a certain
time. The result of the assessment may be influenced by weighing scenarios, if
some scenarios are more important than others, weighing these scenarios reflect
these differences. A usage profile that is created using these steps is summarized in
a table (See Table 2). Figure 2 shows the usage profile creation process.

Fig. 2. Example usage profile.

46 E. Folmer, J. van Gurp, and J. Bosch

This step results in a set of usage scenarios that accurately express the required
usability of the system. Usage profile creation is not intended to replace existing
requirements engineering techniques. Rather it is intended to transform (existing)
usability requirements into something that can be used for architecture assessment.
Existing techniques such as interviews, group discussions or observations [21,11,25]
typically already provide information such as representative tasks, users and contexts
of use that are needed to create a usage profile. Close cooperation between the analyst
and the person responsible for the usability requirements (such as a usability
engineer) is required. The usability engineer may fill in the missing information on
the usability requirements, because usability requirements are often not explicitly
defined.

4.2 Describe Provided Usability

In the second step of SALUTA, the information about the software architecture is
collected. Usability analysis requires architectural information that allows the analyst
to determine the support for the usage scenarios. The process of identifying the
support is similar to scenario impact analysis for maintainability assessment [18] but
is different, because it focuses on identifying architectural elements that may support
the scenario. Two types of analysis techniques are defined:
 Usability pattern based analysis: using the list of architectural sensitive usability

patterns defined in our framework the architecture’s support for usability is
determined by the presence of these patterns in the architecture design.

 Usability property based analysis: The software architecture can be seen as the
result of a series of design decisions [10]. Reconstructing this process and
assessing the effect of such individual decisions with regard to usability attributes
may provide additional information about the intended quality of the system. Using
the list of usability properties defined in our framework, the architecture and the
design decisions that lead to this architecture are analyzed for these properties.

The quality of the assessment very much depends on the amount of evidence for
patterns and property support that is extracted from the architecture. Some usability
properties such as error management may be implemented using architectural patterns
such as undo, cancel or data validation. However, in addition to patterns there may be
additional evidence in the form of other design decisions that were motivated by
usability properties. The software architecture of a system has several aspects (such as
design decisions and their rationale) that cannot easily be captured or expressed in a
single model. Different views on the system [16] may be needed access such
information. Initially the analysis is based on the information that is available, such as
diagrams etc. However due to the non explicit nature of architecture design the
analysis strongly depends on having access to both design documentation and
software architects. The architect may fill in the missing information on the
architecture. SALUTA does not address the problem of properly documenting
software architectures and design decisions. The more effort is put into documenting
the software architecture the more accurate the assessment is.

Software Architecture Analysis of Usability 47

4.3 Evaluate Scenarios

SALUTA’s next step is to evaluate the support for each of the scenarios in the usage
profile. For each scenario, it is analyzed by which usability patterns and properties,
that have been identified in the previous step, it is affected. A technique we have used
for identifying the provided usability in our cases is the usability framework
approach. The relations defined in the framework are used to analyze how a particular
pattern or property affects a specific usability attribute. For example if it has been
identified that undo affects a certain scenario. Then the relationships of the undo
pattern with usability are analyzed (see Figure 1) to determine the support for that
particular scenario. Undo in this case may increase reliability and efficiency. This step
is repeated for each pattern or property that affects the scenario. The analyst then
determines the support of the usage scenario based on the acquired information. See
Figure 3 for a snapshot assessment example.

Software Architecture

Users Tasks Context of
use

Satisfaction Learnability Efficiency Reliability

Account
manager

Insert new
customer in
database

training User should
feel that he is
in control

How easy this
task is to
understand

The time it takes
to perform this
task.

No errors should
occur performing
this task

USAGE PROFILE 1 4 2 3

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework
Fig. 3. Snapshot evaluation example.

For each scenario, the results of the support analysis are expressed qualitatively using
quantitative measures. For example the support may be expressed on a five level scale
(++, +, +/-,-,--). The outcome of the overall analysis may be a simple binary answer
(supported/unsupported) or a more elaborate answer (70% supported) depending on
how much information is available and how much effort is being put in creating the
usage profile.

4.4 Interpret the Results

Finally, after scenario evaluation, the results need to be interpreted to draw
conclusions concerning the software architecture. This interpretation depends on two
factors: the goal of the analysis and the usability requirements. Based on the goal of
the analysis, a certain usage profile is selected. If the goal of the analysis is to
compare two or more candidate software architectures, the support for a particular

48 E. Folmer, J. van Gurp, and J. Bosch

usage scenario must be expressed on an ordinal scale to indicate a relation between
the different candidates. (Which one has the better support?). If the analysis is
sufficiently accurate the results may be quantified, however even without
quantification the assessment can produce useful results. If the goal is to iteratively
design an architecture, then if the architecture proves to have sufficient support for
usability, the design process may be ended. Otherwise, architectural transformations
need to be applied to improve usability. Qualitative information such as which
scenarios are poorly supported and which usability properties or patterns have not
been considered may guide the architect in applying particular transformations. The
framework may then be used as an informative source for design and improvement of
the architecture’s support of usability.

5 Validation

In order to validate SALUTA it has been applied in three case studies:
 eSuite. A web based enterprise resource planning (ERP) system.
 Compressor. A web based e-commerce system.
 Webplatform. A web based content management system (CMS)

The goal of the case studies was twofold: first to conduct a software architecture
analysis of usability on each of the three systems and to collect experiences. Our
technique had initially only been applied at one case study and we needed more
experiences to further refine our technique and make it generally applicable. Second,
our goal was to gain a better understanding of the relationship between usability and
software architecture. Our analysis technique depends on the framework we
developed in [9]. Analyzing architectural designs in the case studies allowed us to
further refine and validate the framework we developed. As a research method we
used action research [1], we took upon our self the role of external analysts and
actively participated in the analysis process and reflected on the process and the
results.

These cases studies show that it is possible to use SALUTA to assess software
architectures for their support of usability. Whether we have accurately predicted the
architecture’s support for usability is answered by comparing our analysis with the
results of user tests that are conducted when the systems are implemented. These
results are used to verify whether the usage profile we created actually matches the
actual usage of the system and whether the results of the assessment fits results from
the user tests For all three cases, the usage profile and architecture assessment phase
is completed. In the case of the Webplatform, a user test has been performed recently.
In this article, we limit ourselves to highlighting some examples from the
Webplatform case study.

ECCOO develops software and services for one of the largest universities of the
Netherlands (RuG). ECCOO has developed the Webplatform. Faculties, departments
and organizations within the RuG are already present on the inter/intra/extra –net but
because of the current wild growth of sites, concerning content, layout and design, the
usability of the old system was quite poor. For the Webplatform usability was
considered as an important design objective. Webplatform has successfully been

Software Architecture Analysis of Usability 49

deployed recently and the current version of the RuG website is powered by the
Webplatform. As an input to the analysis of the Webplatform, we interviewed the
software architect and usability engineer, examined the design documentation, and
looked at the newly deployed RuG site. In the next few subsections, we will present
the four SALUTA steps for the Webplatform.

5.1 Usage Profile Creation

In this step of the SALUTA, we have cooperated with the usability engineer to create
the usage profile.
 Three types of users are defined in the functional requirements: end users, content

administrators and CMS administrators.
 Several different tasks are specified in the functional requirements. An accurate

description of what is understood for a particular task is an essential part of this
step. For example, several tasks such as “create new portal medical sciences” or
“create new course description” have been understood for the task “make object”,
because the Webplatform data structure is object based.

 No relevant contexts of use were identified for Webplatform. Issues such as
bandwidth or helpdesk only affect a very small part of the user population.

The result of the first three steps is summarized in Table1.

The next step is to determine attribute values for the scenarios. This has been done by
consulting the usability requirements and by discussing these for each scenario with
the usability engineer. In the functional requirements of the Webplatform only 30
guidelines based on Nielsen’s heuristics [21] have been specified. Fortunately, the
usability engineer in our case had a good understanding of the expected required
usability of the system. As an example we explain how we determined attribute
values for the usage scenario: “end user performing quick search”.

Table 1. Summary of selected users, tasks for Webplatform.

Users Tasks example
1 End-user Quick search Find course X

2 End-user Navigate Find employee X

3 Content Administrator Edit object Edit course description

4 Content Administrator Make object Create new course description

5 Content Administrator Quick search Find course X

6 Content Administrator Navigate Find phone number for person X

7 CMS Administrator Edit object Change layout of portal X

8 CMS Administrator Make object Create new portal medical sciences
9 CMS Administrator Delete object Delete teacher X

10 CMS Administrator Quick search Find all employees of section X

11 CMS Administrator Navigate Find section library

50 E. Folmer, J. van Gurp, and J. Bosch

First, we formally specified with the usability engineer what should be understood for
each attribute of this task. We have associated reliability with the accuracy of search
results; efficiency has been associated with response time of the quick search. Then
the usability requirements were consulted. A usability requirement that affects this
scenario states: “every page should feature a quick search which searches the whole
portal and comes up with accurate search results”. In the requirements, it has not been
specified that quick search should be performed quickly. However, in our discussions
with the usability engineer we found that this is the most important aspect of usability
for this task.

Table 2. Attribute priority table for Webplatform.

Consequently, high values have been given to efficiency and reliability and low
values to the other attributes. For each scenario, numeric values between one and four
have been assigned to the usability attributes to express the difference in priority.
Table 2 states the result of the quantification of the selected scenarios for
Webplatform.

5.2 Architecture Description

For scenario evaluation, a list of usability patterns and a list of usability properties
that have been implemented in the system are required to determine the architecture’s
support for usability. This information has been acquired, by analyzing the software
architecture (Figure 4) consulting the functional design documentation (some specific
design decisions for usability had been documented) and interviewing the software
architect using the list of patterns and properties defined in our framework.
One of the reasons to develop Webplatform was that the usability of the old system
was quite poor; this was mainly caused by the fact that each “entity” within the RuG
(Faculties, libraries, departments) used their own layout and their own way to present
information and functionality to its users which turned out to be confusing to users.

Users Tasks S L E R
1 End-user Quick search 2 1 4 3
2 End-user Navigate 1 4 2 3
3 Content Administrator Edit object 1 4 2 3
4 Content Administrator Make object 1 4 2 3
5 Content Administrator Quick search 2 1 4 3
6 Content Administrator Navigate 1 4 2 4
7 CMS Administrator Edit object 2 1 4 3
8 CMS Administrator Make object 2 1 4 3
9 CMS Administrator Delete object 2 1 4 3
10 CMS Administrator Quick search 2 1 4 3
11 CMS Administrator Navigate 1 2 3 4

Software Architecture Analysis of Usability 51

Fig. 4. Webplatform software architecture.

A specific design decision that was taken which facilitates several patterns and
properties in our framework was to use the internet file system (IFS):
 Multiple views [8]: The IFS provides an interface that realizes the use of objects

and relations as defined in XML. Using XML and XSLT templates the system can
provide multiple views for different users and uses on the server side. CSS style
sheets are used to provide different views on the client site, for example for
providing a “print” layout view but also to allow each faculty their own “skin” as
depicted in Figure 5.

 Consistency [8]: The use of XML/ XSLT is a means to enforce a strict separation
of presentation from data. This design decision makes it easier to provide a
consistent presentation of interface and function for all different objects of the
same type such as portals. See for example Figure 5 where the menu layout, the
menu items and the position of the quick search box is the same for the faculty of
arts and the faculty of Philosophy.

 Multichanneling [8]: By providing different views & control mappings for
different devices multichanneling is provided. The Webplatform can be accessed
from an I-mode phone as well as from a desktop computer.

Next to the patterns and properties that are facilitated by the IFS several other patterns
and properties were identified in the architecture. Sometimes even multiple instances
of the same property (such as system feedback) have been identified. Some properties
such as consistency have multiple aspects (visual/functional consistency). We need to
analyze the architecture for its support of each element of such a property. A result of
such a detailed analysis for the property accessibility and the pattern history logging is
displayed in Table 3.

52 E. Folmer, J. van Gurp, and J. Bosch

Fig. 5. Provide multiple views/ & Visual/Functional Consistency.

Table 3. Pattern and propetry implementation details.

[pattern]- History Logging - There is a component that logs every user action. It can be
further augmented to also monitor system events (i.e. “the user
failed to login 3 consecutive times”). History logging is especially
helpful for speeding up the object manipulation process.

- Cookies are used to prevent users from having to login again
when a connection is lost. Cookies also serve as a backup
mechanism on the client site. (To retrieve lost data).

[property] - Accessibility

 Disabilities

 Multi channel

Multi channeling is provided by the web server which can
provide a front end to I-Mode or other devices based on
specified XLST templates.

 Internationalization

- Support for Dutch / English language, each xml object has
different language attribute fields.

- Java support Unicode

5.3 Evaluate Scenarios

The next step is to evaluate the architecture’s support for the usage scenarios in the
usage profile. As an example, we analyze usage scenario #4 “content administrator
makes object” from table 2. For this scenario it has been determined by which
patterns and properties, that have been identified in the architecture it is affected. It is
important to identify whether a scenario is affected by a pattern or property that has
been implemented in the architecture because this is not always the case. The result of
such an analysis is shown in a support matrix in Table 3 for two scenarios. A
checkmark indicates that the scenario is affected by at least one or more patterns or
properties. Some properties such as consistency have multiple aspects
(visual/functional consistency). For a thorough evaluation we need to analyze each
scenario for each element of such a property. The support matrix is used together with
the relations in the framework to find out whether a usage profile is sufficiently
supported by the architecture. The usage profile that we created shows that scenario
#4 has high values for learnability (4) and reliability (3). Several patterns and
properties positively contribute to the support of this scenario. For example, the
property consistency and the pattern context sensitive help increases learnability as

Software Architecture Analysis of Usability 53

can be analyzed from Figure 1. By analyzing for each pattern and property, the effect
on usability, the support for this scenario is determined. Due to the lack of formalized
knowledge at the architecture level, this step is very much guided by tacit knowledge
(i.e. the undocumented knowledge of experienced software architects and usability
engineers). For usage scenario #4, we have concluded that the architecture provides
weak support. Learnability is very important for this scenario and patterns such as a
wizard or workflow modeling or different user modes to support novice users could
increase the learnability of this scenario.

Table 4. Architecture support matrix.

Usability patterns Usability properties Scenario num
ber

System
 Feedback

A
ctions for m

ultiple obj.

C
ancel

D
ata validation

H
istory Logging

Scripting

M
ultiple view

s

M
ulti C

hanneling

U
ndo

U
ser M

odes

U
ser Profiles

 W
izard

 W
orkflow

 m
odel

 E
m

ulation

C
ontext sensitive help

 P
rovide feedback

 E
rror m

anagem
ent

 C
onsistency

 A
daptability

 G
uidance

 Explicit user control

 N
atural m

apping

 Accessibility

 M
inim

ize cognitive load

1
4

5.4 Interpret the Results

The result of the assessment of the Webplatform is that three scenarios are accepted,
six are weakly accepted and that two scenarios are weakly rejected. The main cause
for this is that we could not identify sufficient support for learnability for content
administrators as was required by the usage profile. There is room for improvement;
usability could be improved if provisions were made to facilitate patterns and
properties that have not been considered. The usability requirement of consistency
was one of the driving forces of design and our analysis shows that it has positive
influence on the usability of the system. Apart from some general usability guidelines
[21] stated in the functional requirements no clearly defined and verifiable usability
requirements have been specified. Our conclusion concerning the assessment of the
Webplatform is that the architecture provides sufficient support for the usage profile
that we created. This does not necessarily guarantee that the final system will be
usable since many other factors play a role in ensuring a system’s usability. Our
analysis shows however that these usability issues may be repaired without major
changes to the software architecture thus preventing high costs incurring adaptive
maintenance activities once the system has been implemented.

54 E. Folmer, J. van Gurp, and J. Bosch

5.5 Validation

Whether the usage profile we created is fully representative for the required usability
is open to dispute. However, the results from the user test that has recently been
completed by the ECCOO is consistent with our findings. 65 test users (students,
employees and graduate students) have tested 13 different portals. In the usability
tests, the users had to perform specific tasks while being observed. The specific tasks
that had to be performed are mostly related to the tasks navigation and quick search in
our usage profile. After performing the tasks, users were interviewed about the
relevance of the tasks they had to perform and the usability issues that were
discovered. The main conclusions of the tests are:
 Most of the usability issues that were detected were related to navigation, structure

and content. For example, users have difficulties finding particular information.
Lack of hierarchy and structure is the main cause for this problem Although the
architecture supports visual and functional consistency, organizations themselves
are responsible for structuring their information.

 Searching does not generate accurate search results. This may be fixed by technical
modifications. E.g. tuning the search function to generate more accurate search
results. (This is also caused by that a lot of meta-information on the content in the
system has not been provided yet).

The results of this usability tests fit the results of our analysis: the software
architecture supports the right level of usability. Some usability issues came up that
where not predicted during our architectural assessment. However, these do not
appear to be caused by problems in the software architecture. Future usability tests
will focus on analyzing the usability of the scenarios that involve content
administrators. Preliminary results from these tests show that the system has a weak
support for learnability as predicted from the architectural analysis.

6 Conclusions

In this paper, we have presented SALUTA, a scenario based assessment technique
that assists software architects in designing a software architecture that supports
usability. SALUTA consists of four major steps: First, the required usability of the
system is expressed by means of a usage profile. The usage profile consists of a
representative set of usage scenarios that express the required usability of the system.
The following sub-steps are taken for creating a usage profile: identify the users,
identify the tasks, identify the contexts of use, determine attribute values, scenario
selection & weighing. In the second step, the information about the software
architecture is collected using a framework that has been developed in earlier work.
This framework consists of an integrated set of design solutions such as usability
patterns and usability properties that have a positive effect on usability but are
difficult to retrofit into applications because they have architectural impact. This
framework is used to analyze the architecture for its support of usability. The next
step is to evaluate the architecture’s support of usage profile using the information
extracted in the previous step. To do so, we perform support analysis for each of the

Software Architecture Analysis of Usability 55

scenarios in the set. The final step is then to interpret these results and to draw
conclusions about the software architecture. The result of the assessment for example,
which scenarios are poorly supported or which usability properties or patterns have
not been considered, may guide the architect in applying particular transformations to
improve the architecture’s support of usability. We have elaborated the various steps
in this paper, discussed the issues and techniques for each of the steps, and illustrated
these by discussing some examples from a case study. The main contributions of this
paper are:
 SALUTA is the first and currently the only technique that enables software

architects to assess the level of usability supported by their architectures.
 Because usability requirements tend to change over time and may be discovered

during deployment, SALUTA may assist a software architect to come up with a
more usable first version of a software architecture that might allow for more
“usability tuning” on the detailed design level. This prevents some of the high costs
incurring adaptive maintenance activities once the system has been implemented.

Future work shall focus on finalizing the case studies, refining the usability
framework and validating our claims we make. Our framework is a first step in
illustrating the relationship between usability and software architecture. The list of
architecturally sensitive usability patterns and properties we identified are substantial
but incomplete. The framework possibly needs to be specialized for particular
applications domains. Architectural assessment saves maintenance costs spent on
dealing with usability issues. To raise awareness and change attitudes (especially
those of the decision makers) we should clearly define and measure the business and
competitive advantages of architectural assessment of usability. Preliminary
experiences with these three case studies shows the results from the assessment seem
reasonable and do not conflict with the user tests. The usage profile and usage
scenarios are used to evaluate a software architecture, once it is there. However a
much better approach would be to design the architecture based on the usage profile
e.g. an attribute-based architectural design, where the SAU framework is used to
suggest patterns that should be used rather than identify their absence post-hoc.

Acknowledgments

This work is sponsored by the STATUS1 project under contract no IST-2001-32298.
We would like to thank the partners in the STATUS project and ECCOO for their
input and their cooperation.

1 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in

its Information Society Technologies Program. The partners are Information Highway Group
(IHG), Universidad Politecnica de Madrid (UPM), University of Groningen (RUG), Imperial
College of Science, Technology and Medicine (ICSTM), LOGICDIS S.A.

56 E. Folmer, J. van Gurp, and J. Bosch

References

 [1] C. Argyris, R. Putnam, and D. Smith, Action Science: Concepts, methods and skills for
research and intervention, Jossey-Bass, San Francisco, 1985.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Addison Wesley
Longman, Reading MA, 1998.

[3] L. Bass, J. Kates, and B. E. John, Achieving Usability through software architecture,
Technical Report CMU/SEI-2001-TR-005, 1-3-2001.

[4] J. Bosch, Design and use of Software Architectures: Adopting and evolving a product line
approach, Pearson Education (Addison-Wesley and ACM Press), Harlow, 2000.

[5] Brighton, The Brighton Usability Pattern Collection.
 http://www.cmis.brighton.ac.uk/research/patterns/home.html
[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented

Software Architecture: A System of Patterns, John Wiley and Son Ltd, New York, 1996.
[7] E. Folmer and J. Bosch, Architecting for usability; a survey, Journal of systems and

software, Elsevier, 2002, pp. 61-78.
[8] E. Folmer, J. v. Gurp, and J. Bosch, Investigating the Relationship between Usability and

Software Architecture , Software process improvement and practice, Wiley, 2003, pp. 0-0.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns elements of reusable

object-orientated software., Addison -Wesley, 1995.
[10] J. v. Gurp and J. Bosch, Design Erosion: Problems and Causes, Journal of systems and

software, Elsevier, 3-1-2002, pp. 105-119.
[11] D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through

Product and Process., John Wiley and Sons, 1993.
[12] IEEE, IEEE Architecture Working Group. Recommended practice for architectural

description. Draft IEEE Standard P1471/D4.1, IEEE, 1998.
[13] ISO, ISO 9241-11 Ergonomic requirements for office work with visual display terminals

(VDTs) -- Part 11: Guidance on usability., 1994.
[14] R. Kazman, G. Abowd, and M. Webb, SAAM: A Method for Analyzing the Properties of

Software Architectures, Proceedings of the 16th International Conference on Software
Engineering, 1994.

[15] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, The
Architecture Tradeoff Analysis Method, Proceedings of ICECCS'98, 8-1-1998.

[16] P. B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, 1995.
[17] T. K. Landauer, The Trouble with Computers: Usefulness, Usability and Productivity.,

MIT Press., Cambridge, 1995.
[18] N. Lassing, P. O. Bengtsson, H. van Vliet, and J. Bosch, Experiences with ALMA:

Architecture-Level Modifiability Analysis, Journal of systems and software, Elsevier, 2002,
pp. 47-57.

[19] S. Lauesen and H. Younessi, Six styles for usability requirements, Proceedings of
REFSQ'98, 1998.

[20] W. Li and S. Henry, OO Metrics that Predict Maintainability, Journal of systems and
software, Elsevier, 1993, pp. 111-122.

[21] J. Nielsen, Usability Engineering, Academic Press, Inc, Boston, MA., 1993.
[22] J. Nielsen, Heuristic Evaluation., in Usability Inspection Methods., Nielsen, J. and Mack,

R. L., John Wiley and Sons, New York, NY., 1994.
[23] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey, Human-Computer

Interaction, Addison Wesley, 1994.
[24] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, NY,

1992.
[25] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer

Interaction, Addison-Wesley, Reading, MA, 1998.

Software Architecture Analysis of Usability 57

[26] J. Tidwell, Interaction Design Patterns, Conference on Pattern Languages of
Programming 1998, 1998.

[27] C. Wharton, J. Rieman, C. H. Lewis, and P. G. Polson, The Cognitive Walkthrough: A
practitioner's guide., in Usability Inspection Methods, Nielsen, Jacob and Mack, R. L., John
Wiley and Sons, New York, NY., 1994.

Discussion

[Helmut Strieger] How do you know that you really have the right usage scenarios.
[Eelke Folmer] That's always a problem. However, we think that having a
first guess is better than having none at all.

[Bonnie John] In our approach we always try to have the whole design team there
when we're working on things and we find that the scenarios do seem to come out in
the discussion.

[Nick Graham] Can you give a comparison to the SEI approach that Bonnie discussed
earlier? For example, you seem to be doing a post-facto evaluation where the SEI
seems to be focusing on the front end architectural design.

[Eelke Folmer] For now we're focusing on architectural evaluation. One
concern is that on the front end we run the risk of software architects
designing for usability (without support from usability experts) which we
feel is not a good thing.

[Tom Omerod] How impactful and important is the process of rating and prioritising
the four factors that you use in your system (learnability, efficiency of use, reliability
in use, and satisfaction)?

[Eelke Folmer] This helps us to establish which issues are most critical in a
particular system. Also, we did that to get the factors into a format that we
can use for the architectural analysis by mapping to the rest of the
framework.

[Tom Ormerod] The fact that you're trading these things off one against the other is
worrying. For example, if you were working on a birth control system to reduce
unwanted teen pregnancies, you wouldn't be trading off learnability versus reliability -
-- they're both absolute requirements.
[Bonnie John] In our experience the prioritisation doesn't end up being a big issue,
since if you're only focusing on usability the teams seem happy to look at all of them.
However, it is true that in larger ATAMs (where there are many more kinds of
requirements to address) we do find some issues resulting from prioritisation.
[Michael Harrison] This seems very much a top-down approach. How would you
apply this in a more bottom-up, contextual design kind of approach? The interesting
thing about doing it that way is you see some of the unforeseen effects of your
decisions.

[Eelke Folmer] In our approach we start from the usability requirements and
don't put any constraints on where they came from. We think this is OK as it
allows more of a separation of disciplines.

58 E. Folmer, J. van Gurp, and J. Bosch

[Gerrit van der Veer] One of the issues you mentioned up front is that requirements
tend to change. Since you are using scenarios, would it make sense to include
stakeholders who have a vision of business goals --- to involve these in the analysis
and in the development of scenarios regarding changeability and adaptability.

[Eelke Folmer] I agree. However, we find that those requirements tend to get
addressed more under the heading of modifiability than usability.

[Bonnie John] It looks to me that the procedure in your analysis takes the architecture
and asks which patterns and properties appear in the architecture and how. However,
when you're doing the scenario analysis, what happens if the scenario is supported,
but not in a way that's particularly addressed by your patterns?

[Eelke Folmer] Yes, that's an interesting issue. Ultimately it has to be a
collaborative process between the usability engineer and the software
architect.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 59-76, 2005.
 IFIP International Federation for Information Processing 2005

Support for Task Modeling – A "Constructive"
Exploration

Anke Dittmar1, Peter Forbrig1, Simone Heftberger2, Chris Stary2

1University of Rostock, Department of Computer Science
A.-Einstein-Str.21, D-18051 Rostock

[ad/pforbrig]@informatik.uni-rostock.de
2University of Linz, Department of Business Information Systems –

Communications Engineering, Freistädterstr. 315, A-4040 Linz
[Simone.Heftberger /Christian.Stary]@jku.at

Abstract. Although model-based approaches focusing on task modeling for
user-interface design are well accepted among researchers, they are rarely used
by industrial developers. Besides a lack of theoretical frameworks for task
modeling insufficient tool support might be the reason for the low diffusion of
this approach to interactive software-development processes. Thus, we explored
the leading-edge tools TaOSpec, ProcessLens, and CTTE with respect to the
formal representation of work tasks, and the creation of task scenarios. The
results reveal that current model-based design approaches should be more
conceivable by their users with respect to work tasks and their organization.
This objective can be met by embedding scenario-based design elements into
current tools, thus, increasing integrative tool and organizational development
support.

1. Introduction

With the emergence of interactive software systems and their widespread use over the
last decades, the needs of potential users have increasingly become crucial to design.
Design techniques, such as model-based approaches (cf. [1], [2]) encourage designers
to embed user tasks into design representations to achieve accurate interactive
functionality of software systems. Such representation might be based on common
representation schemes, such as XIML [3]. Other approaches, such as participatory
design (cf. [4]) and scenario-based design (cf. [5]) emphasize the active participation
of users during the design process to achieve user-centered systems.

Although traditional model-based design techniques do not require user
participation, they reflect user perspectives on work tasks and work processes. The
designers create different models and their relations to describe tasks, task domains,
user characteristics etc. A variety of representations has to be used in the course of
design, in order to involve all stakeholders, to discuss their interests and to capture
contextual knowledge [6].

60 A. Dittmar et al.

Considering sustainable diffusion of model-based approaches to industrial software
design, the latest developments (cf. [7]) do not indicate significant progress, although
several task-based tools has been tested successfully from the functional perspective
(cf. [8]). The user side, in particular designers and involved users accomplishing work
tasks, has not been investigated thoroughly. Given the fact that scenarios of use can
be created interactively from formal task specifications, scenario-based design
elements might help to make task models more conceivable by users and trigger
organizational developments (cf. [9]).

Consequently, we review major task-based design tools with respect to their
accurate representation and capability to help users understand task-specific support
capabilities based on design specifications and/or on their execution. Tools as a kind
of representation of modeling concepts are intended to support task modeling
activities of designers. Our review should also help developers to get more insight in
applying certain representation schemes and some underlying ideas. They might
recognize gaps between what they want to express and what they can describe
applying a certain modeling approach. In this way, they experience a similar situation
as users given a certain work task, namely when they are co-constructing an
interactive application with designers.

For the sake of a structured review we first introduce a use case in Section 2. We
use that case to demonstrate the capabilities of the considered task-modeling tools.
For its description we use generally accepted constructs within the task modeling
community. In Section 3 we briefly introduce the considered tools including their
conceptual background. For each of the 3 state-of-the-art tools (TaOSpec, Process-
Lens, CTTE) we demonstrate how the example introduced in Section 2 can be
described formally and processed. The generated task scenarios and their interactivity
are discussed in Section 4. Sophisticated model-based approaches enable to create
interactive task scenarios as hands-on experience for users, and thus, trigger reflective
organizational developments. Given the inputs from Section 3 and 4 we finally
provide a comparative analysis of the considered approaches with respect to their
capabilities in Section 5. Although differences between existing task-modeling
approaches can already be identified at the conceptual level (see Section 2) besides
the tool level, those differences might be required for dedicated design purposes, such
as to provide hands-on experience of envisioned task scenarios, and the scope of
applying representations, such as to specify workplace improvements. In Section 6 we
conclude the paper stressing those benefits and proposing further constructive
explorations.

2. A Sample Interactive Task

Our running example is taken from [10] (Figure 1) and specified in TaskMODL, the
Task MODeling Language. In order to accomplish the task Read email a user has to
perform the sub-tasks Get new email and Manage email in arbitrary order. Emails are
managed by executing the sub-task Manage message iteratively. Each cycle requires a
message to be read (sub-task Read message) and being transferred (sub-task Transfer
message).

Support for Task Modeling – A "Constructive" Exploration 61

The concepts Mailbox and Message represent the task domain. They are specified
in RML, a domain modeling language based on language and set theory. It is assumed
that a Mailbox contains messages. In and Out are specific instances of Mailbox.
Elements of the task domain are used as resources for tasks. In the graphical notation
they appear within the bottom part of task nodes or at the edges between nodes (cf.
[10]).

Although this example addresses a simple work task, it captures all relevant
constructs and items for the purpose of studying task modeling and the propagation of
those constructs to scenarios of use. We consider task modeling essential along
hierarchical and sequential structures. In addition, task modeling has to capture
objects of the task domain, and relations between tasks and objects (cf. [11]).

The following scenario-like description of the graphically displayed situation helps
to reveal the usefulness of some other concepts for contextual task modeling.

Patty Smith works as an assistant in the small company ExampleOrg. She is
responsible for receiving all inquiries and for presorting them before they are
transferred to Mr. Young, the manager of ExampleOrg. In case of email messages she
skims through the sender, the topic and, if necessary, she also skims through the
content of a message in order to decide if it needs to be handled at all.

All members of the staff have internal mailboxes called 'Urgent' and 'Normal'.
They are used to send them inquiries which need to be treated urgently or in a regular
time. Everybody knows that all urgent mail messages have to be answered and that
the mailbox 'Urgent' has to be empty before normal inquiries should be handled.

Mr. Young opens his mailboxes every morning and late in the afternoon to react to
inquiries Patty has sent him. He forwards those messages he does not answer by
himself to Paul or Peter . . .

Fig. 1. Task model Read email (left side) and domain model (right side), from [10].

The scenario description enriches the graphically displayed content, since it considers
human actors, their relations to tasks and their collaboration more deliberately. Hence,
we will check whether and how the considered tools are able to capture those
constructs applied in the example. In particular, we will analyze the use of

62 A. Dittmar et al.

 tasks,
 task domains,
 actors,
 relations between tasks and actors, and
 relations between tasks and domain objects

and corresponding design support.

3. Tool Support for Creating Task Models

3.1 TaOSpec – An Executable Specification Language for Tasks and Objects

TaOSpec is a specification language that has been developed for higher-order task
modelling (cf. [12]). In contrast to other task-modeling approaches in TaOSpec (sub-)
models of goals, tasks, actions and (task) objects (created, deleted, used, or
manipulated by actions) are structured along identical modeling principles. Models
are described through cognitive elements (objects) and their mutual relations. A
dedicated relation is the instance-pattern relation between objects explaining
abstractions.

..

domain model

goal

action model situational model

Fig. 2. Tasks as meta-actions modifying sub-models about situations, goals, and actions.

Action, goal, and situational models are considered as sub-structures within the
universal model (domain model) human beings possess about their environment
(observed world). Such sub-structures can be organized more efficiently with respect
to their purpose. For example, an action is assumed to have a simple hierarchical and
sequential character as already shown in the example of Figure 1, whereas goals are
organized as networks, since there might be contradictions between sub-goals. Tasks
are considered as meta-actions (that is to say processes) including the manipulation of
sub-models capturing actual situations, goals, and actions to achieve these goals (see
Figure 2).

Higher-order task models give a more comprehensive understanding of what tasks
represent for humans. Since in TaOSpec there is no strict borderline between
procedural and state descriptions, it is possible, for instance, to treat actions as objects
of other action environments, to manipulate them with respect to certain goals, and to
incorporate them as parts of other actions.

Support for Task Modeling – A "Constructive" Exploration 63

Basically, objects of the domain model are the result of basic operations on sets
and sequences of symbols. However, TaOSpec supports a more elaborated structure
of objects which is more convenient in order to describe pattern objects. Objects are
characterized by a (finite) set of attributes (name-value pairs). We distinguish
between basic and additional attributes. An object OI is considered an instance of
object OP (called pattern object), if, at least, all names of the basic attributes of OP
also occur as attribute names in OI, and their corresponding values are instances of the
attribute values in OP.

Furthermore, TaOSpec facilitates the description of subsets of instances of a
pattern object by partial equations. On the left hand side of such an equation, the
designer specifies the identifier of the subset of interest. The right hand side consists
of an expression whose operands can be identifiers of other defined subsets,
restrictions of attribute values and introduced additional attributes. TaOSpec offers a
set of predefined state and temporal operators on these operands (like the operator or
in Figure 3). For a more detailed description of TaOSpec see, e.g. [13], [14].

::

::

::

::

::

::

ELEMENT Message
ATTR
 $sender: string,

 $receiver: string,
 $topic: string,
 $content: string
ADDATTR
 $answer: string
STATES
 Urgent =

 $receiver=="Anke" or
 $topic=="task modeling",

 Trash =
 $topic=="news",
 Normal =

(not this Urgent) and

ELEMENT Mailbox
ATTR
 $name: string,
 $messages: list
STATES
 Empty = $messages==[],
 NonEmpty = $messages!=[]

msg1:
$sender:"Simone"
$receiver:"Anke"
$topic:"…"
$content:"…"

msg2:
$sender:"Harry"
$receiver:"ExampleOrg"
$topic:"news"
$content:"…"

in:
$name:"InBox"
$messages:[msg1,msg2]

urgent:
$name:"UrgentBox"
$messages:[]

normal:
$name:"NormalBox"
$messages:[]

out:
$name:"OutBox"
$messages:[]

Fig. 3. Pattern objects Mailbox and Message specified in TaOSpec and some instances.

Figure 3 depicts the way of specifying objects. Mailbox and Message serve as pattern
objects describing concrete task situations, as illustrated by some instances. Mailbox
in contains 2 messages, all other mailboxes are empty. Message msg1 is a member of
subset Urgent according to its attribute $receiver:”Anke”. Another, more appropriate
interpretation in this context, is that msg1 is in state Urgent.

For describing the hierarchical and sequential character of actions pattern objects
with partial equations containing temporal operators are used. Figure 4 shows the

64 A. Dittmar et al.

skeleton of the action structure for the running example. (For convenience, we chose
CTTE-notation for temporal operators.)

EQU

HandleEMail(…)=
 GetEMail(…) >> PreSortEMail(…) >>
ManageMail(…),

PreSortEMail(…)=
SelectInMail(…) >> SkimThroughMail(…)
>> TransferOrDeleteMail(…),

ManageMail(…)=
ManageUrgentMail(…) >> ManageNormalMail(…),

ManageUrgentMail(…) =
SelectUrgentMail(…) >> ReadUrgentMail(…)
>> (AnswerUrgentMail(…)
 [] TransferUrgentMail(…)),

ManageNormalMail(…) =

SelectNormalMail(…)
>> ReadNormalMail(…)
>> (AnswerNormalMail(…)

[] DeleteNormalMail(…)
[] TransferNormalMail(…))

temporal
operators:

>> sequential op.
||| concurrent op.
[] alternative op.
* iteration

Fig. 4. Action skeleton of HandleEMail in TaOSpec (for explanation of mark see Section 4)

Actions and objects of a task domain are related by assigning pre- and post conditions
to actions. Such conditions are specified by sets of objects in certain states and
denoted in square brackets. Figure 5 shows part of the declaration of action
HandleEMail.

OPERATION HandleEMail
USES Mailbox,Message
DECL
HandleEMail ($in:Mailbox,$urgent:Mailbox,$normal:Mailbox,

$out:Mailbox) [POST $in.Empty],
GetEMail($in:Mailbox),
*PreSortEMail($in:Mailbox,$urgent:Mailbox,$normal:Mailbox),
ManageMail($urgent:Mailbox,$normal:Mailbox,$out:Mailbox)
 [PRE $urgent.NonEmpty or $normal.NonEmpty], ...
EQU ...
TransferOrDeleteMail($m,$urgent,$normal)[$m.Urgent] = ...,
TransferOrDeleteMail($m,$urgent,$normal)[$m.Trash] = ...,
TransferOrDeleteMail($m,$urgent,$normal)[$m.Normal] = ..., ...

Fig. 5. Some pre- and post conditions assigned to sub-actions of HandleEMail.

For example, sub-action ManageMail can only be performed, if at least one of the
mailboxes urgent and normal is not empty. It is also possible to assign different

Support for Task Modeling – A "Constructive" Exploration 65

preconditions to one sub-action as shown in the specification of the sub-action
TransferOrDeleteMail. It depends on the actual state of the mail message referred to
by $m ($m.Urgent denotes the request that $m has to be in state Urgent etc.) which
one of the three equations is selected.

TaOSpec is an executable specification language. It allows a user to animate
"concrete" actions and to observe the modifications of "concrete" domain objects
caused by the actions (see Section 4). For that reason a set of basic operations is
implemented which corresponds to the general structure of objects in TaOSpec. There
are operations to create/remove objects, to introduce/delete additional attributes to
objects, and to set/get attribute values. TaOSpec supports the use of strings, integer
and real numbers, Boolean values, and lists together with some basic functionality,
such as string concatenation (‘&’), arithmetic operations (‘+’, …), and the
insertion/deletion of elements to/from a list (‘:’, ‘delete’) .

Figure 6 describes the effect of answering a standard message by using basic
operations. After object $m "is changed to an answer message" it is "sent" to mailbox
$out.

 EQU ...
SkimThroughMail($m) = done(),

AnswerNormalMail($m,$out) =

addAttr($m,"answer","hallo "&$m.$sender)
>> setAttr($m,"receiver",$m.$sender)
>> setAttr($m,"sender","ExampleOrg")
>> setAttr($out,"messages",:($m,$out.$messages))

...

Fig. 6. Implementations of sub-actions using predefined operations.

In TaOSpec, we use the keyword OPERATION in specifications instead of
ACTION, since delivering executable basic operations makes an action model
operational. Finally, there is a dedicated basic operation called done() which has no
effect at all. It can be used to leave sub-actions “unspecified” as shown for
SkimThroughMail in Figure 6.

3.2 ProcessLens – Framework and Tool

ProcessLens supports the task- und role-sensitive development of interactive software
through providing an ontology that captures the essentials of work processes (cf.
[15],[16]). It incorporates task and user models into a model-based representation
scheme. The unifying specification language BILA (Business Intelligence Language)
is based on UML and allows to capture model-specific elements and relationships, as
well as the structural and dynamic linking of executable models.

The ProcessLens approach also contains a certain design procedure that is based on
the representation scheme as shown in Figure 7. The ProcessLens models relevant for
task modeling are the user, task and data model:

66 A. Dittmar et al.

relate to

refine to

relate to

refine to

relate to
refine to

Interaction
Model

Problem Domain
Data Model

Task Model

User Model

Business
Intelligence

Model

User interface
prototype

Application Model

Fig. 7. The ProcessLens Model-Based Framework.

 The user model represents a role model by defining specific views on tasks
and data (according to the functional roles of users). Typical elements of
BILA used in this context are organizational unit, position and person.

 The task model comprises the decomposition of user tasks according to the
economic and the social organization of work as well as the different
activities that users have to perform to accomplish their tasks. Typical
elements used for modeling are task, activity and tool.

 The (problem domain) data model describes the data required for work-task
accomplishment. In contrast to traditional data modeling, in ProcessLens
both aspects of data are captured: structure and behavior. A particular
element of BILA is used extensively in the data model, namely material.

Fig. 8. An integrated structure view on tasks and users of Handle Email.

In ProcessLens we use UML class diagrams [17] to specify the structure of all models
and their mutual relationships. A set of predefined elements and relations (some of

Support for Task Modeling – A "Constructive" Exploration 67

them are mentioned above) supports the modeling activities of work processes. Figure
8 depicts the task model (encircled with a dotted line), the user model and some
relations for the running example. Task domain objects (data objects) have to be
added and related to the task model.

Designers or users have to specify and assign activity diagrams [18] to dedicated
model elements to describe the actual accomplishment of tasks (including the
manipulation of data) and role-specific behavior. If elements from different models
are related (structure level) their corresponding activity diagrams have to be
synchronized using a special kind of ProcessLens transition (synchronization
transition at the behavior level). This dynamic linking makes the models operational
and is illustrated in Figure 9, in conformance to our example.

Fig. 9. Activity diagrams of the role element Assistant (above the dotted line) and of the
activity elements Get EMail and PreSort EMail of the task model (left and right bottom part),
including their synchronization - the white directed links denote synchronization transitions.

In order to animate an application based on its specification, several aspects need to
be considered for synchronization. First, action states of activity diagrams of elements
of the user model have to be synchronized with (parts of) activity diagrams assigned
to elements of the task model – ProcessLens supports role-specific user-interface
prototyping. Secondly, action states of activity diagrams of the task model have to be
synchronized within the task model as well as with (parts of) activity diagrams of the
data model. Although the way of specifying is similar, the semantics for
synchronization is different: In the first case (as shown in Figure 9) the division of
labor directs the synchronization, whereas in the second case the detailed design of
(interactive) functionality is captured.

3.3 CTTE

CTTE is a popular task modeling tool (cf. [19],[20]). Figure 10 illustrates how we
applied the tool to model the cooperation between Mr. Young and Patty Smith (see
Section 2) in the roles Manager and Assistant. There are task trees for each role.
Some of their nodes are mapped to leaf nodes in the cooperation tree.

68 A. Dittmar et al.

Fig. 10. Cooperation tree of Handle Email and parts of the task trees of roles Assistant and
Manager in CTTE-notation.

4. Tool Support for Task Scenarios and Organizational
Development

In the following we give two examples of applying task-based approaches in the
context of scenario-based developments.

Fig. 11. A task scenario of Handle Email in CTTE.

Tool Support 1: Improving the Description of Existing Work Situations

"I'm not sure", said Mr. Young as we animated an execution of task 'Handle EMail'

(see CTTE-model in Figure 10 and a snapshot of the animation in Figure 11). "but I
think there is something wrong here. Patty works on the incoming mail messages
during the whole day. So, if there are some messages in my mailboxes I don't need to
wait for her in order to manage the inquiries she has already transferred to me."

Support for Task Modeling – A "Constructive" Exploration 69

Task models are abstract descriptions. Corresponding tools enable users to animate
(more or less) concrete task executions interactively. One run of such an animation is
referred to a task scenario in the context of this work. As indicated in the introduction,
these scenarios can (and should) bridge the gap between model-based and scenario-
based ideas. They do not have a narrative character like the scenarios in [5] since they
are created on the basis of a formal model. In this way, they are not likely to reflect
implicit goals or reveal intrinsic motivation of stakeholders. However, as the above
comment of Mr. Young shows task scenarios might encourage involved stakeholders
to discuss alternative task scenarios and organizational issues of work when provided
with a formal task model.

 ?- animation(situation1).

actual task situation:
(1) Mailbox - {messages:[{sender:"Simone", receiver:"Anke", ...},
 {sender:"Harry", ..., topic:"news", ...}],
 name="InBox"}
(2) Mailbox - {messages:[], name:"UrgentBox"}
(3) Mailbox - {messages:[], name:"NormalBox"}
(4) Mailbox - {messages:[], name:"OutBox"}
enabled actions:
(1) GetEMail
>: 1

actual task situation: …
enabled actions:
(1) SelectInMail
(2) _PreSortEMail /* finish cycle PreSortEMail */
>: 1

after performing steps SkimThroughMail and TransferOrDeleteMail[$m.Urgent]
…

actual task situation:
(1) Mailbox - {messages:[{sender:"Harry", ..., topic:"news", ...}],
 name:"InBox"}
(2) Mailbox - {messages:[(5)], name:"UrgentBox"}
(3) Mailbox - {messages:[], name:"NormalBox"}
(4) Mailbox - {messages:[], name:"OutBox"}
(5) Message - {sender="Simone", receiver="Anke", ... / answer:nil}
enabled actions:
(1) SelectInMail
(2) _PreSortEMail
(3) SelectUrgentMail
(4) _ManageUrgentMail
>: 3

Fig. 12. Parts of the task scenario < GetEMail, SelectInMail, SkimThroughMail,
TransferOrDeleteMail[$m.Urgent], SelectUrgentMail, …>.

Furthermore, task scenarios reveal the capabilities of the underlying modeling
mechanisms. For instance, it is not possible to formalize the description of a task
domain in CTTE although required for task modeling.
Figure 12 contains parts of a task scenario as created by interpreting the TaOSpec-
model developed in Section 3.1 and modified. TaOSpec not only presents sub-tasks

70 A. Dittmar et al.

(sub-actions in the context of TaOSpec) to users which are executable through step-
by-step animation, but also the state of each task object of the actual task situation. In
addition, users can choose the initial task situation (in this case, situation1 which is
illustrated in Figure 3).

Fig. 13. A task scenario of the tasks of role Assistant in ProcessLens.

The integration of knowledge about tasks (actions) and domain objects in TaOSpec
allows precise task descriptions. In the example, only one sequential (temporal)
operator had to be changed to a concurrent one, in order to solve the problem Mr.
Young had with the existing model (see � in Figure 4). The precondition on
ManageMail (see Figure 5) guarantees that this action is only enabled if there is a
message for Mr. Young.

Tool Support 2: Development and Description of the Envisioned Organization of
Work

user

task

data object

Fig. 14. Synchronization of activity diagrams belonging to the user, task, and data object level
according to the envisioned task allocation.

During the creation of the task scenario shown in Figure 13 Patty Smith proposed
to automate task PreSort Email (see Figure 8, Figure 9)…

Support for Task Modeling – A "Constructive" Exploration 71

Envisioning organizational developments comprises issues such as the task allocation
between humans and software systems. Task modeling tools are useful for discussing
such issues. In ProcessLens Patty Smith's proposal can be described and then
animated by simplifying the activity diagram of the (human) activity PreSort Email
(leading to a single action state _presortAutomatically) and "moving the work" to
activity diagrams of the respective data objects, in this case, to the material object
Mailbox In, as illustrated in Figure 14.

5. Comparative Analysis

Although each of the described tools and their conceptual foundations have been
developed within the model-based tradition of design, and consequently support the
representation of tasks, they focus on different aspects: While ProcessLens and CTTE
mainly focus on the development of interactive systems, even allowing hands-on UI-
experience in case of ProjectLens, TaOSpec targets towards explaining human
activities including those in work systems. These differences are reflected through
their means for describing task models and task scenarios.

Table 1. Comparative analysis

 task task domain actor task domain task actor
- task = meta action
- action hierarchy
- explicit temporal

relations between
sibling actions

- predefined opera-
tions assigned to
basic actions

objects with
attributes and
state des-
criptions

one
implicit
actor

by pre- and post-
conditions of
actions

none TaOSpec

- same description mechanism (objects
with attributes and partial equations),

- instance-pattern relationship

- task hierarchy
- sequential temporal

relations between
tasks

- activities with
behavior

data objects
comprising
attributes and
behavior spec.

organizat.
units,
roles,
persons,
incl.
behavior
spec.

- predefined static
relations (e.g.,
creates)

- synchronization
of correspon-
ding behavior

predefined
static
relations (e.g.,
handles)

ProcessLens

class and activity diagrams to describe structure and
behavior of model elements (conform to UML)

CTTE - cooperation tree to
control task trees

- explicit temporal
relations between
sibling tasks

informal
description

roles none - one task tree
for each role

- simple
concept of
coordination

72 A. Dittmar et al.

 task scenario
TaOSpec sequence of basic actions in a concrete task domain (a set of instances of pattern

objects occurring in pre- and post conditions)
ProcessLens - combination of user and task model: sequence of action states of activities

dedicated to a task of an actor
- combination of user, task, and data model: sequence of action states of

corresponding user, task and data objects
- no representation of concrete task domains

CTTE - sequence of tasks of all roles involved
- no representation of a task domain

It turns out that the tools offer different types of presentation of (sub-)models and
their relations, with TaOSpec providing textual presentations of models and
relationships, ProcessLens and CTTE providing diagrammatic notations for
specification. In the concluding section, we propose an integration of different
representations.

From the comparative data it also becomes evident that task models seem to be
related to cooperation models and workflow descriptions. Some concepts like the
cooperative trees in CTTE reflect this fact.

Finally, it can be observed that in none of the tools existing work descriptions are
distinguished from envisioned ones (cf. Tool Support 2 in Section 4). A mechanism
similar to task domain modeling might be used to capture the temporal scope of task
descriptions.

6. Concluding Proposals

Ann Simpson and Simon Brown are responsible for describing the management of
incoming inquiries by the staff of ExampleOrg. Usually, they apply the CTTE-tool to
represent such task models. However, the tool ProcessLens was introduced in their
company three months ago: “I'm happy that I can use activity diagrams to show how
tasks are completed.”, said Simon who has written a diploma thesis about object-
oriented analysis. “I hate these temporal operators in CTTE. I always forget their
semantics and precedence.”

Ann knows Simon’s problem (and his deep task trees with all the “artificial”
nodes). “Sure, but I think it should be possible to describe richer temporal constraints
between sibling tasks in ProcessLens. In that respect, I prefer CTTE.”

6.1 Integrating Different Task Representations

When exploring the reasons for the low acceptance of model-based design approaches
(cf. [8]) we have investigated three different task-modeling tools. Although these
tools and their underlying theoretical or conceptual base assume similar (sub-) models
representing tasks (actions), task domains, and users (actors), we could identify
significant differences with respect to formal granularity and semantic expressiveness
when describing these (sub-)models. For instance, CTTE does not allow formal
specifications of task objects in contrast to TaOSpec. The temporal relationships

Support for Task Modeling – A "Constructive" Exploration 73

between tasks are less formal defined in ProcessLens than in CTTE or in TaOSpec.
For that reason much of the behavior description has to be moved to the level of
activities (as the bottom part of a task hierarchy). Evidently, so far there exists no
commonly agreed level of description, either for fine-grained specifications or
abstract descriptions.

We know from our experience when teaching task modeling and applying
corresponding tools in projects that we need both means to describe sequences of sub-
tasks and means to describe states of objects of a task domain. We also have noticed
that people accept the idea to assign temporal descriptions to each level of a task
hierarchy (as realized in CTTE and TaOSpec) although this strategy restricts the
expressiveness of temporal constraints [21]. However, many of them have similar
problems as Simon Brown. For example, they introduce nodes into a CTTE-hierarchy
which do not play the role of a conceptual sub-task, but rather do allow more
sophisticated temporal descriptions.

In order to guide users to accurate modeling dedicated elements help that supports
the (partially) separate consideration of hierarchi¬cal and sequential aspects of tasks.
For example, a temporal equation can be assigned to each non-basic task T containing
all direct sub-tasks of T (cf. [21]). Other representations are possible as well. In this
case, temporal equations can be replaced by activity diagrams. Figure 15 shows an
abstract example. (Note that ProcessLens does not allow the assignment of activity
diagrams to tasks.) It can be shown that each temporal equation with temporal
operators like >> (sequence), ||| (concurrency), [] (alternative), […] (option), or *
(iteration) can be transformed into a corresponding activity diagram. It is beyond the
scope of this paper to give the set of transformation and simplification rules.

TaOSpec offers a hybrid notation of temporal constraints between sub-tasks and
constraints on object states (in pre- and post conditions of sub-tasks). For those
developers more used to activity diagrams, object flows can support such a hybrid
notation.

Fig. 15. Part of an abstract task hierarchy of task T (left side), a) a temporal equation assigned
to T, b) a corresponding activity diagram.

In Figure 16, a mapping of an abstract fragment in TaOSpec to an activity diagram
with object flows is shown. Implicit object flows in TaOSpec become explicit object
flows in activity diagrams.

74 A. Dittmar et al.

Fig. 16. Constraints on temporal relations and object states of task T: a) in TaOSpec, b) in
activity diagrams with object flows.

6.2 Integrating Different Design Approaches

We suggest not only striving for modeling conventions but also for modeling tools
(and the underlying frameworks) that encourage an integrated use of different design
approaches. As we have demonstrated, the creation of concrete task scenarios helps to
connect model-based and scenario-based ideas. However, in order to achieve that goal
elaborated relations between model elements are required, in particular some
instance-pattern relationship (cf. Tool Support 1 in Section 4).

An animation of task scenarios at different levels of granularity could also be
useful. Existing animation or prototyping techniques could be improved so that users
need not to concentrate on the correct use of animation features, but rather on the
improvement of the task scenarios and the organization of work.

For each of the tools some kind of self-referential application of scenario- or
model-based design ideas could lead to improvements of their user interfaces. For
example, more convenient interaction techniques for changing an activity node to a
task node, e.g., in ProcessLens, could be achieved through interactive temporal
relations.

Overall, a combination of different perspectives on design processes and the
creation of different (task) representations could facilitate tool-based task modeling
besides creating (task) scenarios. The latter can bridge the gap between formal models
and scenarios in a narrative form. An advantage of such a linkage is that concepts like
goals which are difficult to formalize can nevertheless control design activities like
the development of scenarios (which, in return, influence more formal modeling
activities again).

References

1. P. Johnson, S. Wilson. A framework for task based design. Proceedings of VAMMS'93,
second Czech-British Symposium, Prague. Ellis Horwood, 1993.

2. A. Puerta, E. Cheng, T. Ou, J. Min. MOBILE: User-centered interface building. Proceedings
of the ACM Conf. on Human Aspects on Computing Systems CHI'99. ACM Press, pages
426-433, New York, 1999.

3. XIML: A Universal Language for User Interfaces. http://www.ximl.org.

Support for Task Modeling – A "Constructive" Exploration 75

4. E. O'Neill. User-developer cooperation in software development: building common ground
and usable systems. PhD thesis. Queen Mary and Westfield College, Univ. of London, 1998.

5. M.B.Rosson, J.M.Carroll. Usability Engineering – Scenario-Based Devel¬op¬¬ment of
Human-Computer Interaction. Morgan Kaufmann Publishers, 2002.

6. L. Constantine, Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
In [7].

7. J. Jorge, N. J. Nunes, J. F. e Cunha, editors, DSV-IS 2003 : Issues in Designing New-
generation Interactive Systems Proceedings of the Tenth Workshop on the Design,
Specification and Verification of Interactive Systems. Nr. LNCS volume 2844, Springer,
2003.

8. H. Trætteberg, P. Molina, N. Nunes. Making model-based UI design practical: Usable and
open methods and tools. Workshop at the International Conference on Computer-Aided
Design of User Interfaces, CADUI 2004, Madeira, 2004.

9. P. Forbrig, A. Dittmar. Bridging the gap between scenarios and formal models. In C.
Stephanidis, Proc. of the HCI International 2003, pages 98-102, Greece, 2003.

10. H. Trætteberg. Model-based User Interface Design. PhD thesis. Norwegian University of
Science and Technology - NTNU Trondheim, 2002.

11. Q. Limbourg, C. Pribeanu, J. Vanderdonckt. Towards Uniformed Task Models in a Model-
Based Approach. In C. Johnson, editor, DSV-IS 2001, LNCS 2220, pages 165-182,
Springer, 2001.

12. A. Dittmar, P. Forbrig. Higher-Order Task Models. In [7].
13. A. Dittmar. Ein formales Metamodell für den aufgabenbasierten Entwurf interaktiver

Systeme. PhD thesis. University of Rostock, 2002.
14. M. Stoy. TaOSpec - Implementation einer aktionsorientierten Spezifikationssprache.

Studienarbeit, FB Informatik, Univ. Rostock, 2003.
15. C. Stary. TADEUS: Seamless Development of Task-Based and User-Oriented Inter¬fa¬ces.

IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, pp. 509-525, 2000.
16. C. Stary, S. Stoiber. Model-based Electronic Performance Support. In [7].
17. M. Fowler, S. Kendall. UML Distilled - Applying the Standard Object Modeling Language.

Addison Wesley, Reading, Massachusetts, 1997.
18. G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User Guide. Addison

Wesley, 1999.
19. CTTE: The ConcurTaskTree Environment. http://giove.cnuce.cnr.it/ctte.html.
20. F. Paterno, C. Mancini, S. Meniconi. ConcurTaskTrees: A notation for specifying task

models. In INTERACT'97, pages 362-369, 1997.
21. A. Dittmar. More precise Descriptions of Temporal Relations within Task Models. In:

Palanque, P., Paterno, F., editors, DSV-IS 2000, LNCS 1946, Springer-Verlag, pages 151-
168, 2000.

Discussion

[Gerrit van der Veer] As far as I understand, it seemed that all three approaches have
no concept like event or trigger. E.g. in your scenario you have an inquiry arriving,
but none of these three tools can model this properly, since these all model reactive
processes. In real life there should be proactive agents, showing new things arriving
from the outside. This is a basic problem with all three tools--they don't model the
arrival of new events.

[Anke Dittmar, Peter Forbrig] This is not in the current analysis, but we think
that all three could describe these process interruptions.

76 A. Dittmar et al.

[Gerrit van der Veer] Yes, but the tools can only model where the tasks have to be
waiting for something to happen.

[Anke Dittmar, Peter Forbrig] Yes, you are right. We are not interested in
modifying modelling concepts; we are just looking at what is being modelled
right now. However, you could easily make this change to these tools, to
allow that a message is coming from the outside and a task has to respond to
it.

[Juergen Ziegler] Towards the end of your talk you showed how you can model this
approach to UML activity diagrams. What are the advantages of your approach to
activity diagrams or equivalent notations? In your approach you are focusing on the
decompositions of tasks instead of the flow aspects. Do you have any rules, in your
mapping, as to where in the decomposition you may or may not use sequential or
temporal definitions?

[Anke Dittmar, Peter Forbrig] Our specification is much richer than UML
diagrams. For example, UML diagrams cannot specify interrupts. Our
notation is much richer, and it can also specify new temporal relations. But it
might be useful to present these ideas in UML diagrams. Also, UML (or
whatever) specifications are just a means to express task modelling concepts.
For example, here we use activity diagrams to represent the relation between
siblings within the structure. Also, task models are very simple. For example,
they only allow temporal constraints on one level of the hierarchy. So this is
restricted, compared with something like Petri nets. So you cannot describe
complex temporal relations with this notation.

[Michael Harrison] How do your tools help you to express non-normative behaviours,
work-arounds, and errors? For example, attaching (or forgetting to attach) files within
the email example.

[Anke Dittmar, Peter Forbrig] To do this you need to modify the modeling
concepts themselves, so that you can combine different task models. But that
is not the topic of this talk. Perhaps we can do this in the future with
something like an aspect-oriented specification.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 77-95, 2005.
 IFIP International Federation for Information Processing 2005

DynaMo-AID: A Design Process and a Runtime
Architecture for Dynamic Model-Based User Interface

Development

Tim Clerckx, Kris Luyten, and Karin Coninx

Limburgs Universitair Centrum – Expertise Centre for Digital Media
Universitaire Campus, B-3590 Diepenbeek, Belgium

{tim.clerckx,kris.luyten,karin.coninx}@luc.ac.be

Abstract. The last few years a lot of research efforts have been spent on user
interfaces for pervasive computing. This paper shows a design process and a
runtime architecture, DynaMo-AID, that provide design support and a runtime
architecture for context-aware user interfaces. In the process attention is
focused on the specification of the tasks the user and the application will have
to perform, together with other entities related to tasks, like dialog and
presentation. In this paper we will show how we can model tasks, dialogs, and
presentation when the designer wants to develop context-sensitive user
interfaces. Besides the design process, a runtime architecture will be presented
supporting context-sensitive user interfaces. Pervasive user interfaces can
change during the runtime of the interactive application due to a change of
context or when a service becomes available to the application. We will show
that traditional models like task, environment and dialog model have to be
extended to tackle these new problems. This is why we provide modeling and
runtime support solutions for design and development of context-sensitive user
interfaces.

keywords: model-based user interface design, pervasive user interface, context, design process,
runtime architecture, task model, service.

1 Introduction

There is a continuing and growing interest in designing user interfaces for mobile
computing devices and embedded systems. This evolution is driven by a very fast
evolving hardware market, where mobile computing devices like Personal Digital
Assitants (PDAs) and mobile phones are getting more powerful each new generation.
The mobile nature of portable devices and the increasing availability of (wireless)
communication with other resources require applications that can react on context
changes. When we talk about context and context-aware applications, we mean
applications that can adapt to environmental changes, like the change of platform,
network capabilities, services that become available and disappear or even physical
conditions like light intensity or temperature. In [8], Hong states there are several

78 T. Clerckx, K. Luyten, and K. Coninx

goals why context-aware computing is interesting to achieve. Advancing development
of context-aware computing gives incentives to:

- increase the amount of input channels for a computer;
- gather implicit data;
- create more suitable models for the input;
- use the previous elements in useful ways.

To create consistent adaptive user interfaces (UI), UI developers should consider
adaptivity in early design stages. When using the model-based approach in the design
phase some problems can be identified: traditional models, like a task model and a
dialog model are static and not suited to adapt to context changes. This paper shows
how designers can take adaptability of the UI in consideration by extending these
traditional models to support design of context-sensitive user interfaces.

In previous work [3] we have shown how a modified task notation can be used in
order to design context-sensitive user interfaces for static context. Our former
approach limited the influence of the context upon the different models in time. The
context was sensed when the UI was deployed and started on the target device. From
that moment on no context changes were taken into account. In this paper we extend
this method to design and provide runtime support for user interfaces that can be
affected by dynamic context changes. With dynamic context changes we do not only
take into account the target platform, network properties and other environmental
conditions. We also seek a way to consider how we can design a UI for a service.
How to cope with this service when it becomes available to the application on the
portable device of the user is an important issue and the main contribution of this
paper.

According to [5], a service is “a distinct part of a computer system that manages a
collection of related resources and presents their functionality to users and
applications”. An example of a service is a software component, running on a
particular device, offering access to some functionality it provides (e.g., a surveillance
camera can “export” its output video stream, zoom and focus functions). A service
offers functionality that should be used in conjunction with other application logic.
Arbitrary clients can connect to this service and make use of the exported
functionality.

The next section shows existing Model-Based User Interface Development
approaches that support context changes in different ways. In section 3 we discuss our
own design process, DynaMo-AID (Dynamic Model-bAsed user Interface
Development), to develop context-sensitive user interfaces that support dynamic
context changes. DynaMo-AID is part of the Dygimes [4] User Interface Creation
Framework. Section 4 introduces a runtime architecture to support user interfaces
created with the DynaMo-AID process. Afterwards a genuine case study will be
shown in section 5 to illustrate the practical use of DynaMo-AID. In this paper we
show how the DynaMo-AID process is supported by the appropriate design tools.
Finally the paper is concluded with a discussion of the obtained results and a
description of the future work.

DynaMo-AID: A Design Process and a Runtime Architecture 79

2 Related Work

The current literature shows a growing interest in the creation of context-sensitive
user interfaces. During the last few years we see more interest in defining and
exploiting context information on several levels of the UI conception. The primary
goal of most initiatives is to more flexibly design user interfaces, with increasing
design/code reusability resulting in user interfaces that become more usable in
different contexts of use.

The different levels for introducing context information can be summarized as
follows. First, the task model can be made dependent on the context, as shown in
[15,21]. Next, at the dialog level navigation can be dependent on the context e.g.
allowing navigation to take place in a multiple-device setting where the user can take
advantage of multiple devices or settings in the same time span [3,28]. Finally at the
presentation level context information can be considered to choose the most
appropriate widgets, as in [27,14]. Notice we consider the user model to be part of the
context information. In this work we will allow to integrate context on different levels
of the user interface design and creation like shown in the next sections.

Calvary et al. [2] describe a development process to create context-sensitive user
interfaces. The development process consists of four steps: creation of a task-oriented
specification, creation of the abstract interface, creation of the concrete interface, and
finally the creation of the context-sensitive interactive system. The focus however,
lays upon a mechanism for context detection and how context information can be
used to adapt the UI, captured in a three-step process: (1) recognizing the current
situation (2) calculating the reaction and (3) executing the reaction. In our approach
we will focus on the exposure of a complete design process using extended versions
of existing models, and how context reflects on these models. Furthermore we extend
context by taking into account the effects of incoming and abolished services.

Mori et al. present a process [15] to design device-independent user interfaces in a
model-based approach. In this approach, a high-level task model is constructed to
describe tasks that can be performed on several platforms. Afterwards, the designer
has to specify which tasks of the high-level description can be performed on which
device. When this is done, an abstract UI will be created followed by the UI
generation. In our approach we describe the differences between target platforms in
one complete task model and provide the possibility to take into account other sorts of
context information than platform.

In the next sections we integrate several solutions to build context-sensitive user
interfaces into one process with appropriate tool support for this process. To our
knowledge there is no other initiative trying to combine context-information on the
different levels of model-based user interface development. The distinct parts of this
process will be presented separately.

80 T. Clerckx, K. Luyten, and K. Coninx

Fig. 1. The DynaMo-AID Design Process.

3 The DynaMo-AID Design Process

The main goal is to create a process that enables the user interface designer to create
user interfaces for pervasive systems. Since pervasive interfaces have a strong link to
the information provided by their direct environment, these interfaces should be
capable to evolve according to the context changes initiated in their environment.
Figure 1 gives an overview of the DynaMo-AID Design Process. In this process the
designer can specify the interaction by constructing and manipulating abstract models
because at design time it may be unknown for which environments (available
hardware and software services, physical environment, target user,…) the UI will be
rendered.

The models used in our process try to enhance the ones commonly used in Model-
Based User Interface Design [20]. This is why extra attention is payed on the
representation and semantics of these models: we will investigate how expressive
traditional existing models are, and where they need to be extended for pervasive
systems. For this purpose a “meta” model is introduced: the Dynamic Model is a
model that can change at runtime in a way that the model can be merged with another
model from the same type (e.g. attaching subtrees to an existing tree) or parts of the
model can be pruned. This way the Dynamic Model can be seen as a dynamic
extension of Interface Model, as introduced in [22]. The Interface Model exists out of
the set of relevant abstract models (task, dialog, domain, user,…) necessary to
describe the interface of a system.

DynaMo-AID: A Design Process and a Runtime Architecture 81

In the DynaMo-AID Design Process there is a difference between the main
application, for example running on a PDA or a cell phone, and services (applications
that provide a service and an interface) that can be encountered during the runtime of
the interactive application. Services have to be modelled separately from the design of
the main application.

In summary, the DynaMo-AID Design Process consists of the following steps:
1. constructing the Dynamic Task Model for the main application (section 3.1).
2. attaching abstract descriptions to the unit tasks1 of the Dynamic Task Model.

Platform-independent high-level user interface components are connected with
these leaf tasks similar as we have shown in previous work [4,13,3].

3. calculation of the ConcurTaskTrees Forest. This is the collection of
ConcurTaskTrees describing the tasks to be performed for each common
occurence of context during the runtime of the main application. For
uncommon occurences of context, these tasks have to be specified as a service.

4. automatic extraction of the dialog model for each ConcurTaskTree in the
ConcurTaskTree Forest.

5. construction of the atomic dialog model by the designer. This dialog model
consists of the subatomic dialog models created in the previous step and
contains all transitions that may occur during the runtime of the main
application, triggered by an action of the user, the application or even a change
of context (section 3.2).

6. linking context information to the task and dialog model through abstract
context objects (section 3.3).

7. modeling the services: accomodate each service with a task tree describing the
tasks user and application can perform when they are able to use the service
(can be done anywhere in the process and services can be used by different
applications)

This process enables us to design context-sensitive user interfaces and supports fast
prototyping. It enables us to create a prototype presentation using the methodology we
introduced in [4]. This will be further explained in section 3.5. This design process
demands further explanation. This is why the Dynamic Models will be separately
discussed in the following subsections.

3.1 Dynamic Task Model

To specify tasks we use a modified version of the ConcurTaskTree notation,
introduced by Fabio Paterno [17]. This notation offers a graphical syntax, an
hierarchical structure and a notation to specify the temporal relations between tasks.
Four types of tasks are supported in the CTT notation: abstract tasks, interaction tasks,
user tasks, and application tasks. These tasks can be specified to be executed in
several iterations. Sibling tasks, appearing in the same level in the hierarchy of
decomposition, can be connected by temporal operators like choice ([]), independent
concurrency (|||), concurrency with information exchange (|[]|), disabling ([>) ,
enabling (>>), enabling with information exchange ([]>>), suspend/resume (|>) and

1 A unit task that can not be devided in subtasks any further. In a ConcurTaskTree specification

these are the leaf tasks [21]

82 T. Clerckx, K. Luyten, and K. Coninx

order independency (|=|).The support for concurrent tasks is very valuable because
of our envisioned target: pervasive systems where users can transparently interact
with the (embedded) computing devices in their environment. Some tasks can be
supported by multiple devices, thus concurrent usage of these different resources
should be supported in the task design notation. In the remainder of this paper we
will make extensive use of “Enabled Task Sets” (ETS). An ETS is defined in [17] as:

a set of tasks that are logically enabled to start their performance during the
same period of time.

To link abstract information about how a task can be performed by an actor (user
or application), we attach platform-independent high-level user interface components
to these leaf tasks [13,3]. This way all possible user interfaces are covered by a
complete annotation of the task specification.

Several approaches that use the ConcurTaskTrees Notation [17] exist for modelling
context-sensitive human-computer interaction. In [18], Paternò and Santoro show how
ConcurTaskTrees can be used to model user interfaces suitable for different
platforms. Pribeanu et al. [21,26] proposed several approaches to integrate a context
structure in ConcurTaskTrees task models. The main difference in our approach is the
support for runtime context-sensitivity introduced in the different models.

In order to make a connection with the dynamic environment model we choose the
approach described in [3] where decision nodes, denoted by D, collect distinct
subtrees from which one of them will be selected at runtime according to the current
context of use. To link the dynamic task model with the dynamic environment model
and to gather information about a suitable presentation of the UI, decision nodes are
coupled to Abstract Context Objects (section 3.3). We can summarize it here as
follows. The decision nodes notation enables to specify task models that describe the
tasks (1) a user may have to perform in different contexts of use and (2) where tasks
that are enabled by new incoming services will find there place in the task model. To
obtain this, services are accompanied by a task description as a formal description for
the goals that can be accomplished through their use. Figure 5 shows a decision tree
where “Use ImogI” is a decision node where a distinction in tasks is made between
the use of a mobile application inside or outside a certain domain.

3.2 Dynamic Dialog Model

A dialog model describes the transitions that are possible between user interface
states. Although transitions usually are invoked by a user action or a call from the
application core, in this case the current context is also an actor that can perform a
transition.

To specify a dialog model, several notations are used: State Transition Networks
[29], Dialogue Graphs [25], Window Transitions [28], Petri Nets [19],… The State
Transition Network (STN) notation describes the dialog between user and application
by defining states (including a start-state and possibly several finish states) of the UI
and transitions between these states.

DynaMo-AID: A Design Process and a Runtime Architecture 83

Fig. 2. Dynamic Dialog Model.

Puerta and Eisenstein [23] introduced the mapping problem: the problem of

mapping abstract models (domain/task/data model) in model-based user interface
design to more concrete models (dialog/presentation model). Limbourg,
Vanderdonckt et al. [12,28] proposed several rules to derive dialog information from
constrained ConcurTaskTrees task models (a parent task has exactly one child task).
In [13] we have already shown it is possible to extract a dialog model automatically
from a task model. We made use of the ConcurTaskTrees Notation to represent a task
specification and the dialog model is structured as a STN. In this method, the states in
a STN are extracted from the task specification by calculating the enabled task sets
[17].

Because the context may change during the execution of the application, the dialog
model becomes more complex. First, the dialog models can be extracted
automatically from each possible ConcurTaskTree that may occur. Afterwards the
designer can draw transitions, that can only be invoked by a context switch, between
the dialog models. This way a dynamic dialog model is created. To express this
approach, we introduce following definitions:

Definition 1 An intra-dialog transition is a transition in a STN caused by the
completion of a task through user interaction or by the application. Intra-dialog
transitions connect enabled task sets from the same ConcurTaskTree. Transitions are
triggered by the execution of a task, either by the user or by the application, and can
be denoted by:

Definition 2 An inter-dialog transition is a transition in a STN caused by a context
switch. Inter-dialog transitions connect enabled task sets from different
ConcurTaskTrees of the same ConcurTaskTrees Forest and are triggered by a
positive evaluation of a context condition. Inter-dialog transitions can be denoted by:

84 T. Clerckx, K. Luyten, and K. Coninx

Definition 3 A subatomic dialog mode is a STN containing the states and transitions
from the same ConcurTaskTree. This means a subatomic dialog model is a regular
STN, extracted from one ConcurTaskTree.

Definition 4 An atomic dialog model is a STN where the states are subatomic dialog
models and the transitions are inter-dialog transitions between states of different
subatomic dialog models.

Figure 2 illustrates the definitions of subatomic and atomic dialog model. The
subatomic dialog model is the classical dialog model where actions of user or system
imply the transition to another state. When a context change occurs, this dialog model
can become obsolete. As a result a transition to another subatomic dialog model takes
place and an updated UI comes into play. Note that a context change can also invoke
a system function instead of performing an inter-dialog transition (e.g. turning on the
backlight of a PDA when entering a dark room). This explains the invocation arrow in
figure 4 that connects dialog and application.

3.3 Dynamic Environment Model

Despite several efforts to describe context information and using it for interactive
applications [2,7,24,11], it still is a challenging issue due to the lack of a standard and
practical implementations.

Calvary et al. [1,2] introduce an environment model to be specified by designers
for defining the current context of use together with the platform model. Furthermore
the evolution model describes when a context switch takes place and defines the
appropriate reaction.

Coutaz and Rey [7] define the contextor, a software abstraction of context data that
interprets sensed information or information provided by other contextors. In this way
a chain of contextors can be created to produce one logical component.

Salber et al. [24] describe a widget-based toolkit, the Context Toolkit, containing
abstract widgets in order to:

- encapsulate rough context details to abstract context from
implementation details (like the proxy design pattern);

- reuse widgets in different applications.

The Dynamic Environment Model (figure 3) represents context changes, and
provides us with a model to react on these changes in an appropriate way. In contrast
with other approaches, a service is also part of the environment in our model. Since a
service offers (previously unknown) functionality that can integrate with the whole of
the application, a more dynamic approach is neccessary here. This means calculated
changes in the navigation through the interface should be supported. To explain the
effect of the Dynamic Environment Model, some definitions are introduced here:

DynaMo-AID: A Design Process and a Runtime Architecture 85

Fig. 3. Dynamic Environment Model.

Definition 5 A Concrete Context Object (CCO) is an object that encapsulates entities
(like low level sensors) that represent one sort of context.

Definition 6 An Abstract Context Object (ACO) is an object that can be queried
about the context it represents.

Different from the approach in [24] we separate the abstraction and encapsulation
functions of a context widget. This is necessary because due to context changes, the
number of available widgets can change on the abstract and concrete level. Moreover
this separation allows to support context-sensitive user interfaces on the design level.
First, a new service may introduce new abstract widgets (ACOs), linked to the
accompanying task specification. Furthermore, a change of platform resources (e.g.
moving into the reach of a wireless LAN may imply connection to a server and a
printer) can give or take away access to CCOs. As a result, the mapping of an ACO to
CCOs has to be repeated when the collection of ACOs or available CCOs changes.

This can be taken care of by defining mapping rules in order to select the
appropriate CCOs currently available for each ACO used by the interactive
application. The mapping function can be implemented by dividing CCOs into
categories, and specify for each ACO the appropriate CCOs relevant to the abstract
widget. The detection of context changes and the call to repeat the mapping is handled
by the Context Control Unit (CCU) that is part of the runtime architecture (section
4).

To link the environment model to the task and dialog model, ACOs are attached to
the decision nodes (section 3.1). For each subtree, a query is provided to denote which
conditions have to be fulfilled by an ACO to select the subtree. In this way, when the
atomic dialog model is constructed, the transitions can be marked with the correct
ACOs and belonging queries.

86 T. Clerckx, K. Luyten, and K. Coninx

Remark the analogy with abstract interaction objects (AIOs) and concrete
interaction objects (CIOs) [27] used to describe user interface components in a
platform independent way.

3.4 Dynamic Application Model

The functional core of the application does change when a service (dis)appears: this
change influences the models. As stated before, services are accompanied with a task
specification they support to provide a high-level description of the interaction that
should be enabled when the service becomes available. When the designer wants the
main application to update the UI at the time an unknown service becomes available,
he/she has to reserve a decision node to specify where in the interaction a place is
provided to interact directly with the service (e.g. the “Service”-task in figure 5).

When the service becomes available, the dialog and environment model also have
to be updated. The atomic dialog model has to be extended with the new subatomic
dialog models, provided by the task model attached to the service. Next, the
environment model needs to be changed on two levels: (1) the new task model can
provide new decision nodes. As a result new ACOs can be introduced, and these have
to be mapped on the available CCOs. (2) the service can provide access new CCOs. In
this case the CCU will also have to recalculate the mappings.

3.5 Presentation Model Enabled for Fast Prototyping

During the design of the different models we support direct prototyping of the UI. Our
system supports the automatic generation of the UI from the different models that are
specified. For this purpose we start with calculating the ETSs from the annotated task
model: each ETS is a node in the dialog model. One such node represents all UI
building blocks that have to be presented to complete the current ETS (section 3
showed that UI building blocks were attached to unit tasks).

The designers (and future users) can try the resulting interface during the design
process. Important aspects of the UI can be tackled in the design phase: improving
navigation, consistency, layout and usability in general are done in an early stage.
Tool support is implemented and presented in section 6. There is only limited support
for styling the UI; enhancing the graphical “aesthetic” presentation is currently not
supported in our tool.

4 The DynaMo-AID Runtime Architecture

To put a designed UI into practice, a runtime architecture must exist to support the
results of the design process. [6] gives an overview of several software architectures
to implement interactive software. Architectures based on SEEHEIM, ARCH,
SLINKY and PAC make use of a dialog controller, to control the interaction flow
between the presentation of the UI and the functional core of the interactive
application. Because we present a runtime architecture where tasks and environment

DynaMo-AID: A Design Process and a Runtime Architecture 87

can change during the execution of the application (sections 3.3 and 3.4), the dialog
controller is assisted in making decisions about dialog changes by the task controller
and the Context Control Unit.

Figure 4 shows the DynaMo-AID runtime architecture. When the application is
started, first the current context will be detected, and the applicable task model will be
chosen before the UI will be deployed. Then the subatomic dialog model belonging to
this task model will be set active and the start state of this model will be the first
dialog to be rendered in the concrete UI. The context will be sensed by scanning the
information provided by posing the queries in the ACOs.

Fig. 4. The DynaMo-AID Architecture.

From now on interaction can take place and the state of the UI can change due to
three actors: the user, the application and the Context Control Unit (CCU).

The user interacts with the target device to manipulate the presentation. As a result,
the dialog controller will perform an intra-dialog transition and update the
presentation of the UI. The second actor is the application. The application core can
also manipulate the UI (e.g. displaying the results of a query after processing). Also,
an incoming service extends the application core and can carry a task model
containing abstract user interface components. This is why the task controller will be
notified with an update to modify the dialog model. It is obvious that an abolished
service also implies an update of the task as well as the dialog model. The last actor
that is able to change the state of the UI is the CCU, introduced in section 3.3.

88 T. Clerckx, K. Luyten, and K. Coninx

The tasks of the CCU are:
1. detection of context changes: a context change will be detected by the CCU

when an ACO throws an event.
2. recalculation of mappings from CCO to ACO: a service can also be a

provider of context information and this is why, in that case, the service must
be reachable for the CCU to recalculate ACO to CCO mappings. When the
service is abolished, the CCU will also apply the recalculation.

3. selection of the current context-specific task model: the CCU will inform the
Task Controller of the changed ACO and the Task Controller will return the
current valid context-specific task model.

4. execution of inter-dialog transition (together with the dialog controler): using
the appropriate context-specific task model, the dialog controller will be
informed to perform an inter-dialog transition.

The next section will show how the runtime architecture and the design process
can be of practical use.

5 A Case Study

Within a few kilometres from our research department there is an open-air museum of
550 ha large. It contains a large collection of old Flemish houses and farms of the late
18th century, and allows the visitors to experience how life was in those days.
Currently we are developing a mobile tourist guide “ImogI” for this museum, and use
the methodology discussed above to create a usable context-sensitive interface for this
application. The hardware setup is as follows: the visitor has a PDA with a GPS
module as a touristic guidance system and museum artefacts are annotated with
“virtual information” that can be sent to the guide once the tourist enters the artefacts
range. The mobile guide contains a map of the museum and some information about
the whereabouts of the artefacts; more detailled information is sent by the artefacts
themselves (through a built-in system using bluetooth communication) to the mobile
guide. This makes sure new artefacts can be placed at an arbitrary place in the
museum without the guidance system becoming obsolete. The system depicted on the
mobile guide is always up-to-date.

Figure 5 shows a simple ImogI task specification. On the first level of the task
specification there are two context-dependencies expressed as decision nodes: the first
one determines whether the user is inside or outside the domain. When the user is
situated outside the museum premises, the application will act like a normal GPS
navigation system. When the user moves into the open air museum, the application
transforms into a mobile guide and vice versa. The other decision node allows to
attach new services that become available in the direct surroundings of the PDA. The
former context information is obtained by a GPS module on the PDA. We are
currently implementing the latter with Bluetooth. The task specification in figure 5
can anticipate visitors leaving the actual museum boundaries to explore the facilities
outside the premises. Figure 6 shows how the resulting dialog specification
supporting automatic detection of the context change looks like. The dashed arrows

DynaMo-AID: A Design Process and a Runtime Architecture 89

Fig. 5. ImogI Decision Tree

Fig. 6. ImogI Atomic Dialog Model.

90 T. Clerckx, K. Luyten, and K. Coninx

and specifiy the transition between
the different dialog models. An important remark is the designer must specify
between witch ETSs of the different ConcurTaskTrees inter-dialog transitions can
occur. This way the designer can preserve usability when the user is performing a task
existing of several subtasks. For example, the user can be confused if the user
interface suddenly changes when he or she is scrolling through a map or performing
some other critical task. Notice the two dialog models are the result out of two
different enabled task sets. A context change influences the task groupings, and by
consequence influences the navigational properties of the interface. For this reason
dialog specifications are considered separately for each context change. In our
example, the ETS E(CTT1) is followed by E(CTT2).

Our starting-point here is the support for dynamic extensible models to have better

support for designing context-sensitive user interfaces. The case study here shows
their use: the open-air museum can change the location of their information kiosks or
add other artefacts without constantly updating the mobile guide. Information kiosks
can communicate with the mobile guide and offer all kinds of services (photo
publishing, extra information, covered wagon reservations,…). Figure 7 shows the
task specification for the kiosk. This task specification will be integrated within the
context-sensitive task specification. The transitions between the different dialog
specifications are done similar with the previous example.

6 Tool Support

To test our approach we have implemented a limited prototype of the DynaMo-AID
design process and runtime architecture using the Dygimes rendering engine. The
DynaMo-AID tool (figure 8) aids to construct a context-sensitive task model [3], to
attach abstract presentation information, and to construct atomic dialog models. The
construction of the atomic dialog model by the designer supports automatic extraction
of the subatomic dialog models belonging to all ConcurTaskTrees in de
ConcurTaskTrees Forest.

DynaMo-AID: A Design Process and a Runtime Architecture 91

Fig. 7. Task Model attached to the Kiosk Service.

Fig. 8. The DynaMo-AID Tool.

After the modeling phase, a context-sensitive user interface prototype can be
rendered. When the prototype is deployed, a control panel is shown where the user
interface designer can manipulate context parameters. The designer can then see how
a change of context reflects on the prototype.

7 Conclusions and Future Work

We have presented both a design process and a runtime architecture to support the
creation of context-sensitive user interfaces. We believe this work can be an incentive
for reconsidering the model-based user interface development approaches to enable
the design of user interfaces for pervasive computing applications.

92 T. Clerckx, K. Luyten, and K. Coninx

The next step is to integrate more general context specifications. At the moment
our applications consider a fixed set of Abstract Context Widgets, but there is work in
progress within the CoDAMoS2 project to construct a more general context
specification and integrate it in our system. Another extra feature could be to support
propagating the effect of new services to the UI prototype of the main application.
Another issue we whish to tackle is usability. At the moment usability is to a large
extent the responsibility of the user interface designer when he/she draws the inter-
dialog transitions. In this way context switches can only affect the UI where the
designer wants the UI to change. To bring a change of context to the user's attention,
changes with the previous dialog could be marked with colors, or a recognizable
sound could tell the user a context-switch has occured.

8 Acknowledgements

Our research is partly funded by the Flemish government and European Fund for
Regional Development. The CoDAMoS2 (Context-Driven Adaptation of Mobile
Services) project IWT 030320 is directly funded by the IWT (Flemish subsidy
organization).

References

1. Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Embedding Plasticity in the
development process of interactive systems. In 6th ERCIM Workshop “User Interfaces for
All”. Also in HUC (Handheld and Ubiquitous Computing) First Workshop on Resource
Sensitive Mobile HCI, Conference on Handheld and Ubiquitous Computing, HU2K,
Bristol, 2000.

2. Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Supporting Context Changes for
Plastic User Interfaces: A Process and a Mechanism. In Joint Proceedings of HCI 2001 and
IHM 2001. Lille, France, pages 349-364, 2001.

3. Tim Clerckx, Kris Luyten, and Karin Coninx. Generating Context-Sensitive Multiple
Device Interfaces from Design. In Pre-Proceedings of the Fourth International Conference
on Computer-Aided Design of User Interfaces CADUI’2004, 13-16 January 2004, Funchal,
Isle of Madeira, Portugal, pages 288-301, 2004.

4. Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and Bert Creemers.
Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and
Embedded Systems. In Human-Computer Interaction with Mobile Devices and Services, 5th
International Symposium, Mobile HCI 2003, pages 256-270, Udine, Italy, September 8-11
2003. Springer.

5. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: concepts and
design, Third Edition. Addison-Wesley, ISBN: 0201-61918-0, 2001.

6. Joëlle Coutaz, Software architecture modeling for user interfaces. In Encyclopedia of
Software Engineering. Wiley and sons, 1993.

2
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/
CoDAMoS/

DynaMo-AID: A Design Process and a Runtime Architecture 93

7. Joëlle Coutaz and Gaëtan Rey. Foundation for a Theory of Contextors. In Kolski and
Vanderdonckt [10], pages 13-33. Invited Talk.

8. Jason I. Hong. The Context Fabric: An infrastructure for context-aware computing. In
CHI’02 extended abstracts on Human factors in computer systems, Minneapolis,
Minnesota, USA, pages 554-555, ACM Press, 2002.

9. Chris Johnson, editor. Interactive Systems: Design, Specification, and Verification, 8th
International Workshop, DSV-IS 2001, Glasgow, Scotland, UK, June 13-15, 2001, Revised
Papers, volume 2220 of Lecture Notes in Computer Science. Springer, 2001.

10. Christophe Kolski and Jean Vanderdonckt, editors. Computer-Aided Design of User
Interfaces III, volume 3. Kluwer Academic, 2002.

11. Panu Korpipää, Jani Mätyjärvi, Juha Kela, Heikki Keränen, and Esko-Juhani Malm.
Managing context information in mobile devices. IEEE Pervasive Computing, Mobile and
Ubiquitous Systems, 2(3):42-51, July-September 2003.

12. Quentin Limbourg, Jean Vanderdonckt, and Nathalie Souchon. The Task-Dialog and Task-
Presentation Mapping Problem: Some Preliminary Results. In Palanque and Paternò [16],
pages 227-246.

13. Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdonckt. Derivation of a Dialog
Model from a Task Model by Activity Chain Extraction. In Joaquim A. Jorge, Nuno Jardim
Nunes, and João Falcão e Cunha, editors, Interactive Systems: Design, Specification, and
Verification, volume 2844 of Lectures Notes in Computer Science, pages 191-205.
Springer, 2003.

14. Kris Luyten and Karin Coninx. An XML-based runtime user interface description language
for mobile computing devices. In Johnson [9], pages 17-29.

15. Giulio Mori, Fabio Paternò, and Carmen Santoro. Tool Support for Designing Nomadic
Applications. In Proceedings of the 2003 International Conference on Intelligent User
Interfaces, January 12-15, 2003, Miami, FL, USA, pages 141-148, 2003.

16. Philippe A. Palanque and Fabio Paternò, editors. Interactive Systems: Design,
Specification, and Verification, 7th International Workshop DSV-IS, Limerick, Ireland,
June 5-6, 2000, Proceedings, volume 1946 of Lecture Notes in Computer Science.
Springer, 2000.

17. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications. Springer
Verlag, ISBN: 1-85233-155-0, 1999.

18. Fabio Paternò and Carmen Santoro. One model, many interfaces. In Kolski and
Vanderdonckt [10], pages 143-154.

19. Carl Adam Petri. Kommunikation mit automaten, second edition. New York: Griffiss Air
Force Base, Technical Report RADC-TR-65-377, Vol.1, 1966.

20. Paulo Pinheiro da Silva. User interface declarative models and development environments:
A survey. In Palanque and Paternò [16], pages 207-226.

21. Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling for Context-
Sensitive User Interfaces. In Johnson [9], pages 60-76.

22. Angel Puerta. A Model-Based Interface Development Environment. In IEEE Software,
pages 40-47, 1997.

23. Angel Puerta and Jacob Eisenstein. Towards a general computational framework for model-
based interface development systems. In Proceedings of the 1999 International Conference
on Intelligent User Interfaces, Los Angeles, CA, USA, pages 171-178, 1999.

24. Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In Proceedings of the 1999 Conference on
Human Factors in Computing Systems (CHI ’99), Pittsburgh, PA, May 15-20, pages 434-
441, 1999.

25. Egbert Schlungbaum and Thomas Elwert. Dialogue Graphs – a formal and visual
specification technique for dialogue modelling. In Formal Aspects of the Human Computer
Interface, 1996.

94 T. Clerckx, K. Luyten, and K. Coninx

26. Nathalie Souchon, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling in Multiple
contexts of Use. In Peter Forbrig, Quentin Limbourg, Bodo Urban, and Jean Vanderdonckt,
editors, Interactive Systems: Design, Specification, and Verification, volume 2545 of
Lecture Notes in Computer Science, pages 60-76. Springer, 2002.

27. Jean Vanderdonckt and François Bodart. Encapsulating knowledge for intelligent automatic
interaction objects selection. In ACM Conference on Human Aspects in Computing Systems
InterCHI’93, pages 424-429. Addison Wesley, 1993.

28. Jean Vanderdonckt, Quentin Limbourg, and Murielle Florins. Deriving the navigational
structure of a user interface. In Proceedings of the 9th IFIP TC 13 Int. Conference on
Human-Computer Interaction Interact2003 Zürich 1-5 september 2003, pages 455-462,
2003.

29. Anthony Wasserman. Extending State Transition Diagrams for the Specification of Human-
Computer Interaction. IEEE Transactions on Software Engineering, 11:699-713, 1985.

Discussion

[Willem-Paul Brinkman] How do you approach the problem that the user may be
confused if the interface changes because of the context? Users may not be aware that
the device is able to sense the environment.

[Tim Clerckx] This is an important issue in context-aware computing. We
have tried to put this responsibility in the hands of the UI designer, to make
the UI user aware. The designer can then know when a change is happening
and can do something about it.

[Willem-Paul Brinkman] Do you provide any guidance to the designer as to what to
do?

[Tim Clerckx] This is difficult to do in general.

[Juergen Ziegler] I like the approach to provide different levels of abstraction. What is
the range of factors that you consider: location, temporal, etc. Is there any limitation?
Also, you showed that several concrete context factors can be handled in an abstract
object. How do you deal with the potential combinatorial explosion of factors?

[Tim Clerckx] Regarding the first question, we have done experiments with
the hardware sensors and GPS coordinates and we can easily define other
context objects. For the second question, we handle the complexity in the
abstract context objects. At the moment these are ad hoc implementations to
interpret the information.

[Michael Harrison] In a different context you may absorb information in a different
way. It isn't clear to me how your approach would capture this kind of information.

[Tim Clerckx] In each layer we abstract a bit of information. So these
context changes can be captured.

[Michael Harrison] Yes, but in different contexts you may have different information
flows. This is critical in some contextual interfaces. Is this embedded in the actions?

[Tim Clerckx] You could encapsulate user input with a concrete context
object and this could be interpreted by an abstract object.

DynaMo-AID: A Design Process and a Runtime Architecture 95

[Bonnie John] What if the user wants to override the default task context, e.g. the user
is in a museum but wants to discuss where to go for lunch. How do you reprent this in
your tool?

[Tim Clerckx] If you want to do that it must be included at the task design
time, where the designer explicitly allows the user to override the context
and provides some user interaction for this purpose. The concrete contetx
object would be a button press. The abstract context object would say to
change the context and not change it back because of sensors until the user is
done.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 96-111, 2005.
 IFIP International Federation for Information Processing 2005

Using Task Modelling Concepts for Achieving
Adaptive Workflows

Carsten Eichholz, Anke Dittmar, Peter Forbrig

University of Rostock,
Institute of Computer Science,

A.-Einstein-Str. 21,
18059 Germany

{eichholz|ad|pforbrig}@informatik.uni-rostock.de

Abstract. Business processes are usually described by abstract workflow
specifications. However, existing workflow descriptions are often too restricted
to reflect the true nature of work. For instance tasks might be added or deleted
during execution. The presently available workflow management systems
insufficiently support the desired flexibility for workflows. In this article we
present an approach, how certain kinds of adaptability can be achieved on the
base of task modelling combined with the principle of “Order & Supply”. Task
models offer means to describe the way humans perform tasks in cooperation
focussing on the individual level. We show that the principles of task modelling
can also be used for cooperative workflow models providing means on group
level.

1. Introduction

The introduction of workflow management systems (WFMS) in companies has
emerged as a major advantage to plan, control, and organise a company’s business
processes. Workflow processes can be modelled and executed, thus the business
process is assisted by a software while it is running. Chiefly, the flow of documents
through a process, but also scheduling, notification, and other communicative tasks
are assisted.

Although these advantages are of great help, it is often desired to keep workflows
more flexible. The definition of a business process cannot be completely foreseen at
its beginning. A lot of changes and adaptations are done while the process is already
running. The presently available workflow management systems do scarcely support
adaptability for workflows as the following statements show: “Traditionally,
workflow management systems have not been designed for dynamic environments
requiring adaptive response.”[1] “It is widely recognised that workflow management
systems should provide flexibility. [...] However, today’s workflow management
systems have problems dealing with changes.”[13]

This is constituted by several problems, e.g. changing workflows should be
possible even during execution, but what happens with already started tasks? Are the
renewed or the extended tasks in execution still consistent to old tasks that have been

Using Task Modelling Concepts for Achieving Adaptive Workflows 97

finished in the workflow? Because of these and other questions, adaptive workflows
have become an important research area.

In this paper, we present an approach for dealing with workflow adaptability by
using task models. Recent approaches in task modelling offer means to specify more
flexible task models. We show that certain kinds of adaptability for workflows can be
solved using task models. In section 2 we introduce the ideas behind the concepts of
task analysis and workflows, and show that the similarity between them can be a basis
for our approach. Section 3 gives an overview of the question of adaptation in
workflows. Different aspects of adaptability are presented, mainly based on the paper
of van der Aalst [13]. In the subsequent section 4, we show with our method of
“Order & Supply” how certain aspects of adaptation can be solved by using task
models. This method is finally illustrated in an example presented in section 5. Some
related approaches concerning adaptivity in workflows are shown and compared in
section 6 while in the last section some conclusions of our approach are summarised
as well as some perspectives on future expectations are presented.

2. Task Models and Workflows

In this chapter we briefly characterise the two main concepts our approach is based
on, namely task models and workflow specifications. Trætteberg compared workflow
models and task models in [12]. He states that both “essentially describe the same
domain, but at different levels”. While workflows support work on the organisational
and group level, task models rather consider the individual level of work. We show
that the similarity between these concepts allows an implementation of certain
adaptation aspects desired in workflows by use of task models.

2.1. Task Models

Task models play an important role in the model-based design of user interfaces for
interactive systems. The process of interaction—the process of working with a
software system—is modelled with the aim “to have a structured method for allowing
designers to manage such a complexity”[7] as it emerges in user interface design.
According to [7], task models can be useful for the purpose of:

 Understanding an application domain
 Recording the results of interdisciplinary discussions
 Designing new applications consistent with the user conceptual model
 Analysing and evaluating usability of an interactive system
 Supporting the user during a session
 Documenting interactive software

In addition, we propose to use task models for coordinating tasks and activities in a
more general way, i.e. coordination of activities in business processes.

Tasks consist of activities that are performed to reach a goal, which can be
considered as modifying a system into a desired state. Tasks are structured

98 C. Eichholz, A. Dittmar, and P. Forbrig

hierarchically (see hierarchical task analysis, HTA [2]), forming so-called task-trees.
Thus, tasks can be described at different levels of abstraction and detail. Between
activities exist certain dependencies defining the order of execution. Often, such
dependencies are described by a set of temporal equations, using predefined temporal
operators. Task models can therefore be seen as a combination of HTA and a
description of temporal execution. Paternò et al. developed ConcurTaskTrees, a
method for task modelling using these principles. They define temporal operators [9]
like:

 T1|||T2 Interleaving (parallel execution)
 T1|=|T2 Order independency
 T1>>T2 Enabling (sequential execution)
 T1[>T2 Deactivation
 T1[]T2 Choice
 [T] Option
 T* Iteration

In the ConcurTaskTree notation, the dependencies between activities in the task tree
are included into the diagrammatic notation. Unary operators are marked at a task’s
name (e.g. “*” at “enter terms” in Fig. 1) and binary operators are put between two
tasks, read from left to right (e.g. “|||” between “collect terms” and “define terms”).

Different types of tasks are identified: abstract tasks, user tasks, interaction tasks,
and application tasks. Later extensions of this method introduce cooperative trees,
where sub-tasks can be distributed to and performed by different roles/employees (cf.
[8]). This allows modelling task execution not only at individual but at group level as
well. Fig. 1 shows an example for a cooperative task tree, as it can be modelled in
CTTE, a tool supporting the ConcurTaskTree modelling approach.

Fig. 1. Cooperative task tree for the task “manage glossary”.

This example models the task of managing a glossary. The sub-tasks “enter terms”
and “maintain terms” are assigned to the roles “Collector” and “Administrator”
respectively. Each role is assigned a sub-task tree and performs the execution of it.

Using Task Modelling Concepts for Achieving Adaptive Workflows 99

The broad arrows symbolise the distribution of work (not part of the CTT notation).
The double arrows mark the sub-tasks as being part of a cooperative task. CTTE
allows to animate the execution of such a cooperative model.

2.2. Workflow Models

Processes in an organisation require to be constantly reconsidered and optimised to
meet the market's claims, as well as to fit new requirements in changing environment,
like availability of resources etc. Workflow technology facilitates the modelling,
redesign and administration of processes in an organisation.

Georgakopoulos et al. define workflow as “a collection of tasks organized to
accomplish some business process” and the definition of “the order of task invocation
or condition(s) under which tasks must be invoked, task synchronization, and
information flow (data flow)”[5]. According to this, business processes can be
described by specifying workflows. Business processes can be implemented as
material processes (mainly production processes focussing on the manipulation of
physical objects) or information processes (partly or fully automated transaction
processes). One of the main reasons for using workflow technology in organisations is
to understand business activities and thus have a means for improving customer
satisfaction, increasing efficiency, and reducing costs.

Yet, it is necessary to periodically reconsider the business activities by so-called
business process engineering (BPR) to fit new requirements. BPR addresses issues of
customer satisfaction. It is complemented by information process reengineering (IPR)
which addresses system efficiency and costs and describes the process requirements
for information system functionality and human skills [5]. Conversely to the
periodical reconsideration through business process reengineering, a continuous
process examination, known as continuous process improvement (CPI) becomes more
and more important (see [1]). As we see in the next section, workflow adaptation
while the workflow is running comes with a number of difficulties.

Workflows are commonly classified in three categories: (I) ad-hoc workflows, with
low complexity, few participants and short-term activities, (II) administrative
workflows, with repetitive and predictable processes where the coordination of tasks
may be automated, and (III) production workflows, which typically have a high
complexity and the processes are, like in administrative workflows, repetitive and
predictable (cf. [5,10,1]).

In the following, the definitions are given according to the Workflow Management
Coalition (WfMC), an organisation of practitioners as well as researchers, who have
provided a glossary of standardised terms of workflow technology, to have a more
precise understanding of what workflow is [14]:

Workflow: The automation of a business process in whole or part, during
which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.
Business Process: A set of one or more linked procedures or activities which
collectively realise a business objective or policy goal, normally within the
context of an organisational structure defining functional roles and
relationships.

100 C. Eichholz, A. Dittmar, and P. Forbrig

Process Definition: The representation of a business process in a form which
supports automated manipulation, such as modelling, or enactment by a
workflow management system. The process definition consists of a network of
activities and their relationships, criteria to indicate the start and termination of
the process, and information about the individual activities, such as
participants, associated IT applications and data, etc.
Workflow Management System (WFMS): A system that defines, creates and
manages the execution of workflows through the use of software, running on
one or more workflow engines, which is able to interpret the process
definition, interact with workflow participants and, where required, invoke the
use of IT tools.

Workflows represent business processes. Business processes are modelled by process
definitions and executed/interpreted by a workflow management system.

As we have seen, workflow management deals with coordination as well as
execution. Buhler and Vidal [1] express the idea of workflow in the aphorism
workflow = activities + processes, in analogy to the view on software programs as
application = calculation + coordination. Here we see activities as the de facto
executable components (called coordinables in [1]) while a process (coordinator in
[1]) comprises the structuring of the activities, i.e. the activities’ coordination.

Buhler’s and Vidal’s idea of introducing flexibility in workflows is based on web
services and agents. Web services are components that execute a task and deliver
results. Agents are used to coordinate the provided results of web services according
to a certain goal. Buhler and Vidal speak of adaptive workflow engines = web
services + agents, in analogy to the previously given equations.

2.3. Business Processes Modelled as Tasks

As stated in [12], workflow models and task models address the same domain,
namely, how can tasks and activities be coordinated in such a way that their execution
accomplishes the business goals. The difference between these two means lies in the
different levels. Workflow models mainly focus on collaborative work, while task
models primarily represent the individual task execution [12]. In the following, we are
using the principles of task modelling to model group activities in a more flexible way
by introducing distributable sub-tasks.

In our approach we call the parts, into which a business process is structured, tasks.
Such tasks are assigned to groups or single persons for execution. We call the
assignment of a task order, following the notions from business perspective.
According to [3], we can distinguish tasks and orders in the way, that tasks are
interpreted subjectively, while an order necessarily has objective characteristics.
Thus, when an order is given to a group or person, it has to be transformed into a task.
Fig. 2 illustrates this relation between the notions “task” and “order”.

Using Task Modelling Concepts for Achieving Adaptive Workflows 101

Fig. 2. Relation between task models and order models (according to [3]).

Group A planned two task models for different tasks and orders a certain person X
(possibly a member of another group) with both tasks. Person X now has a set of tasks
to do and has to compose his own task model from these two orders. This means,
person X has to transfer the given (objective) orders into an own (subjective) task
model.

In this transferring step, person X can make certain adaptations in the allowed
range of the predefined structures of the orders. The following section gives a brief
overview of different aspects of adaptation in connection with workflows.

3. Aspects of Adaptation

When speaking of flexibility in workflows, one can imagine several aspects of
change. Van der Aalst et al. [13] made a comprehensive classification of these
changes, of which we present an overview in this section.

Process definitions—our workflow specifications—are an aggregation of cases, i.e.
runs through processes. Thus, a process definition is an abstraction of a concrete
workflow, sometimes also called workflow schema. From this process definition,
instances are created for the enactment in a WFMS. So the possible instances (or
runs) can be seen as cases and the process definition comprises the description of a
number of cases. Similarly, a task model comprises a set of different runs according
to the task model definition.

Based on this idea, we can distinguish between two main types of change [13]:

 ad-hoc changes, where a change only inflicts one instance. Such a change might
occur on exceptions or errors, or maybe special demands. In this case the workflow

102 C. Eichholz, A. Dittmar, and P. Forbrig

description stays untouched. For ad-hoc changes, it has to be checked what kinds of
changes are allowed at all. It is possible to allow changes at any time, so-called
changes on-the-fly, or to restrict changes in an instance just when it starts (entry
time) and then no more.
 structural changes, where the workflow description itself is changed and is thus
affecting all new instances. This, of course, involves some conflicts like: What
happens with already started tasks?, or: Is the old running workflow still consistent
with the new definition? In [13] the following, three strategies for structural changes
are distinguished: restart all running instances, or proceed the existing instances
according to the old definition and start new instances according to the new one, or
finally transfer the existing instances to satisfy the new definition.

In [13] the main kinds of changes in a workflow, no matter if structural or ad-hoc, are
classified as follows:

1. Extending tasks: A new task is inserted in a sequence, or added as being
processed parallel to existing, or added as an alternative of an existing task.

2. Replacing tasks: An existing task is replaced with a new one.
3. Reordering tasks: The order of execution of existing tasks is changed.

Besides these three kinds of changes we introduce some additional kinds of change,
that affect the set of possible instances of a workflow model:

4. Selecting tasks: Alternative and optional tasks, as defined in the task
definition, can be constrained, thus the degrees of freedom, the set of
possible runs, can be reduced. This means, an option may be made
obligatory, or alternatives may be removed. This kind of change may be
done before the actual execution and renders the task definition more
precisely.

5. Constraining: The existing structure of task execution is further constrained
by additional global rules, which means rules that may be defined over tasks
in any layers of the task tree. Thus, the set of possible runs through the
model is being reduced.

The latter two types of change lead us to some concrete adaptation approaches as
explained in the context of different aspects of change. According to [13], the aspects
of changes cover the following branches:

 control perspective: covers the allocation and introduction of new resources to
processes.

 system perspective: covers the infrastructure and configuration of the WFMS.
 task perspective: covering the adaptation of the set of possible runs.
 resource perspective: Resources may influence the order, respectively the choice

of tasks in a business process.
 process perspective: covers the adaptation of the process definition.

We understand the task perspective as a reduction of degrees of freedom in the
definition of a task., mainly using the idea of constraining the structure (see the fifth

Using Task Modelling Concepts for Achieving Adaptive Workflows 103

head point of kinds of change above). This can be done by introducing additional
rules (temporal equations) besides the rules for each node. These additional rules
create relations using any activities, not just those of a sub-tree. This idea is already
presented in [2] and illustrated there by an example.

As regards the resource perspective, exhausted resources can constrain the options
and alternatives for certain tasks. We understand this perspective as a way of using
resources as a means of control. Thus, assigning resources to tasks can be used as a
control criteria for preferred choices and thus prioritise possible alternative task
executions.

The process perspective covers the idea of extending tasks. During its execution a
task is refined by adding new sub-tasks (extending) or determining alternatives and
options (selecting) in the predefined structure. The selecting is done, before the
execution starts. This will be the basis for our approach of Order & Supply as
described in the next section.

4. Workflow Adaptation by “Order & Supply”

Since a business process cannot be completely modelled in all details in the planning
phase, adaptation has to be done by different employees after the enactment of a
model. An adaptation in our approach can lead to either extending a task by new sub-
tasks, or making a choice for alternative or optional tasks.

Considering the execution of a complex business process, we follow the metaphor
of “Order & Supply”, which means, in cooperative work, an employee A wants the
execution of a task done by another employee B, i.e. A orders B to perform the task.

Often, an order comes with some predefined task structure. We assume that tasks
and orders resemble the same structural description (see also [3] for more detail).
Thus, an order already might have defined some constraints for its execution (cf. Fig.
1 above: when interpreting the sub-trees of collector and administrator as orders, then
we see that their orders already have a predefined structure).

B has to redefine A’s order to his own task. In this redefinition process, B can
adapt the order according to the degrees of freedom that are allowed within the
predefined structure. Additionally, B can order some tasks further to another
employee C, who again may adapt this order to his task. Such ordering can be done
recursively.

After having solved the ordered task, the employee returns his results to the
employee who ordered, i.e. he supplies the results. Thus, when B completed the task,
he gives the results back to employee A, thus B supplies results for A. The principle
of order and supply is summarised in Fig. 3.

Regarding our task model, an order corresponds to passing a sub-tree of the task
tree to another employee. In the following, we consider business processes as being
structured like tasks. We suggest a number of steps, how the above introduced Order
& Supply principle can be realised.

104 C. Eichholz, A. Dittmar, and P. Forbrig

Fig. 3. The principle of Order and Supply.

Step 1. coarse modelling: Before a business process comes into enactment, it has to
be modelled at least roughly to have a basis for the work. The main task has to
be defined (this will be the root node of the corresponding task-tree) and the
sub-tasks have to be determined. As described in [9] the task model is built in
three phases: (i) hierarchical logical decomposition of the tasks forming a tree-
like structure. (ii) identification of the temporal relationships between tasks.
(iii) identification of the objects associated with each task. We neglect objects
here and concentrate on the tree structure and temporal relations. After building
a task model in such a way, we have a more or less coarse model.

Step 2. distribution of tasks: After the coarse model is built, it is being instantiated
and the tasks are executed according to the defined rules. The execution of a
business process, is planned by distributing it in parts which have to be
performed by actors in certain roles. A role model maps the set of employees to
the set of roles necessary for our business process. We call the distribution of a
task to an employee order. When distributing an order, i.e. a sub-tree, the sub-
tasks of this task may give a predefinition which can be adapted by the
receiving employee as we see in the next step. Each employee has one or more
tasks (task-trees) to process and each employee can further distribute parts of
his task-tree(s) to other employees. The distribution should consider the
workload of the employee for efficient and balanced processing. Hence, one
can imagine monitoring the workload. Additionally, an employee should have
the possibility to accept/deny a given order. An employee who receives a task
as an order uses it as his view on the business process. All other tasks are
hidden and not accessible. So any adaptation does generally not influence other
tasks in the business process.

Step 3. adaptation of task: When an employee receives an order, he is going to
adapt it when necessary. On the one hand, the adaptation of a task can happen
before starting to execute the task. This comprises appending new sub-tasks,

Using Task Modelling Concepts for Achieving Adaptive Workflows 105

thus refining and specifying the task in more detail (according to adaptation by
extending, reordering or also replacing as described in the section above). In
our approach, we neglect the adaptation by reordering and replacing, rather we
presuppose an intention in the given task tree, that means the employee who
gives the order has put his imagination into the model that he distributes. On
the other hand the task can be adapted after the enactment of the model, i.e.
while executing it. This means, alternatives are chosen and options are taken or
rejected (according to adaptation by selecting, see above). It is, of course, also
imaginable to select alternatives/options before starting the execution, for
example if the employee has enough information to make such a decision. All
adaptations made in this step are local and in the current instance only (cf. ad-
hoc change, in the above section), so we avoid problems of inconsistency.

Step 4. execution of task: This step means de facto performing the task during the
enactment of the model. The sub-tasks are executed according to the defined
temporal equations. In this phase, selecting is still possible, although selecting
during the execution means no adaptation, rather it characterises a concrete run.
Only the leaves of the task tree are actual operations that are executed. Non-
leaf-nodes just serve for structuring the task. When all leaves of a node are
completed, the node itself is marked as complete as well.

Step 5. returning results: This is the supply phase of the process. After the
employee has completed his task tree, the results are given back to the
employee, who has ordered it. This is done recursively through the whole tree
until all nodes (sub-tasks) are completed and the global goal of the task tree is
achieved and the business process is finished. Mainly, the results consist of
certain artefacts, documents or notifications (like acceptance or denial of
requests).

These steps should illustrate, how to perform the whole or parts of a business process.
Steps 1 and 2 are done at the beginning of processing a workflow. Steps 3, 4, and 5,
as well as step 2, when further distributing, are then performed until the task is
complete. The business process in a whole can be seen as one big and complex task
model in the background which is processed and adapted continuously during
runtime. The participating employees only see their view on parts of the business
process. To describe the global task model of the business process, one can use XML
descriptions, for instance as suggested by Stavness and Schneider[11].

In the next section we show, how this method can be put into practice by
illustrating the principles at the example of maintaining a web glossary.

5. An Example: Maintenance of a Web Glossary

In this section, we illustrate the above described method of Order & Supply in a
simple example. Lets consider the business process of maintaining a web-based
glossary. This process can be classified as a certain kind of content management.

In our example, a research group is responsible for setting up and maintaining a
web glossary. Necessary tasks are: adding new notions and definitions, editing

106 C. Eichholz, A. Dittmar, and P. Forbrig

existing notions like adding a figure or a reference, or removing terms from the
glossary database. These tasks are done by the members of the research group. A first
rough version of the task “maintain web glossary” might be modelled as shown in
Fig. 4.

Fig. 4. Coarse model.

We can divide the maintenance in the way that each member of the group is
responsible for a different subject, lets say one employee maintains notions from the
area of object oriented technologies, another employee maintains notions in usability
engineering, and a third employee is responsible for programming languages. In the
following, lets concentrate on adding a notion to the glossary. Fig. 5 shows, how a
refinement of our first draft might look like and how we distribute tasks to employees,
i.e. our experts in OO, Usability, respectively PL, thus realising ordering.

Fig. 5. Distributing sub-tasks.

Lets take a look at the activities of the OO expert. As we explained in the section
before, the employees can adapt their tasks before they are executing them as well as
during execution. Adding notions to a glossary might be structured by predefinition
and could be as illustrated in Fig. 6. Hence, a definition needs the definition text, and
definition reference, while figures and links are optional.

… …

Using Task Modelling Concepts for Achieving Adaptive Workflows 107

Fig. 6. Predefined sub-tree distributed to an employee.

If an employee is adding a notion, he has certain degrees of freedom. He might
give an own definition text or do a research about the notion and referencing to the
source (alternatives). He might add a figure to his definition text or not (option). The
Employee adapts his task tree by adding further tasks and making a decision about
optional tasks. Figure 7 illustrates possible points of adaptation.

Fig. 7. Adaptation possibilities

Our employee decided to research a definition. Also, he is not adding a figure nor a
link to his description. The adapted task tree of our software expert might look like in
Fig. 8.

108 C. Eichholz, A. Dittmar, and P. Forbrig

Fig. 8. Task tree after adaptation.

In this example, we have illustrated adaptation before execution starts. The
employee can as well make decisions during performing his task. For instance, he
might decide to delegate the sub-task “save notion” to an assistant who just inserts all
collected information into the system.

We have modelled the diagrams in CTTE, an environment to model tasks
according to [9]. Although the environment does not allow adaptation as we described
above (except deciding for options or between alternatives), nor does it support
distribution of subtasks, it serves as a good means of visualising task-trees in
cooperative work.

6. Related Works

As shown in the introduction, keeping workflows adaptable is an important research
area. Various techniques and approaches for dealing with adaptability in workflows
can be found in the literature. Van der Aalst et al. implement dynamic change in
business processes by using petri nets [13]. Odgers and Thompson consider aspect-
oriented process engineering, combining techniques from the aspect-oriented
programming with business process management [6]. Edmond and ter Hofstede use
reflection and meta-object protocols [4]. They introduce task meta-objects for
appropriate abstraction, thus allowing reasonable adaptation of a process’ structure.

Furthermore, the idea of using Agents and Web Services for realising adaptation in
workflows as described by Buhler and Vidal [1] is a promising topic for further
enquiry. In a more general view, the subject of adaptive workflows can be seen as a
new paradigm in software engineering, in terms of the new view described in [1].
This subject transcends to the area of structure dynamic systems and self organization
from general systems theory.

Using Task Modelling Concepts for Achieving Adaptive Workflows 109

7. Conclusions

We have seen that task models are an appropriate way of describing workflows, at
least covering the group-level-oriented workflows. It comprises main aspects of
workflow modelling. Using task models for describing workflows opens new ways of
dealing with adaptation as we tried to show by examining the process perspective
with our “Order & Supply” principle. This principle resembles the delegation in
object-oriented technologies from a technical point of view. From the business
perspective, “ordering” means to distribute tasks to different institutions. This may
become clearer especially when tasks are distributed across a company’s borders. In
this context, the results of a solved order are supplied to the ordering customer.

We can distinguish adaptation before and while performing a task, e.g. Certain
temporal relations, like option and choice allow to be processed before runtime as
well as during runtime. We speak of adaptation of the workflow definition when
options and alternatives are constrained before execution.

All adaptations we considered, only concern a reduction of degrees of freedom or
extending tasks in a closed sub-tree. We did not inquire complete structure changes in
processes. The general problem of adaptation in systems can be identified as
structure-dynamic systems, a challenging area and large application field not only in
the ambit of workflow modelling.

References

1. Buhler, P. A., Vidal, J. M.: Towards Adaptive Workflow Enactment Using Multiagent
Systems. In Information Technology and Management Journal, 2003.

2. Dittmar, A., More Precise Descriptions of Temporal Relations within Task Models. in P.
Palanque and F. Paternò (eds.), Interactive Systems: Design, Specification, Verification;
LNCS 1946, pp. 151–168, Springer 2000.

3. Dittmar, A., Ein formales Metamodell für den aufgabenbasierten Entwurf interaktiver
Systeme. PhD Thesis, University of Rostock, 2002.

4. Edmond, D., ter Hofstede, A. H. M.: Achieving Workflow Adaptability by Means of
Reflection. In Proceedings of CSCW-98 Workshop Towards Adaptive Workflow Systems,
Seattle, USA, 1998.

5. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. In Distributed and Parallel
Databases, vol. 3, No. 2, pp. 119–153, 1995.

6. Odgers, B., Thompson, S. G.: Aspect-oriented Process Engineering (ASOPE), Workshop
on AOP at European Conference on Object-oriented Programming, Lisbon, Portugal, 1999.

7. Paterno, F.: Task Models in Interactive Software Systems. In S. K. Chang (ed.), Handbook
of Software Engineering & Knowledge Engineering, World Scientific Publishing, 2001.

8. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
2000.

9. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In Human Computer Interaction – INTERACT’97, pp. 362–369,
1997.

10. Plesums, Ch.: An Introduction to Workflow. Workflow Handbook 2002, Workflow
Management Coalition, 2002.

110 C. Eichholz, A. Dittmar, and P. Forbrig

11. Stavness, N., Schneider, K.: Supporting Workflow in User Interface Description
Languages. Workshop on Developing User Interface Description Languages, AVI2004,
Gallipoli, Italy, 2004.

12. Trætteberg, H.: Modeling Work: Workflow and Task Modeling. In J. Vanderdonckt and A.
Puerta (eds.), Computer-Aided Design of User Interfaces II (CADUI); Louvain-la-Neuve,
Belgium, Kluwer, 1999.

13. van der Aalst, W. P. M., Basten, T., Verbeek, H. M. W., Verkoulen, P. A. C., Voorhoeve,
M.: Adaptive Workflow — On the interplay between flexibility and support. In J. Filipe
and J. Cordeiro (eds.), Proceedings of the first International Conference on Enterprise
Information Systems, vol. 2, pp. 353–360, Setúbal Portugal, March 1999.

14. Workflow Management Coalition: Terminology & Glossary, Document Number TC-1011,
3rd version, http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf.

Discussion

[Tom Ormerod] I am interested in your claim that your adaptations can be made at the
local level without running into dependency problems. For example, if I was teaching
RE and someone made a change to the OO course, this would have implications. So
how can local effects be accounted for?

[Carsten Eicholz] If there is such an influence, it must be modelled
explicitly, at a higher level of abstraction. A dependency would mean that we
could not, in the example, have paralellism, since paralellism means that
there is no dependency.

[Tom Ormerod] I'm wondering how you could slice that in a way that you can
guarantee that there are no dependencies.

[Carsten Eicholz] It depends on the expectations that you have of the model.
In our study we have modeled complex independence. When there is a
dependency, you cannot slice things in this way. Perhaps you could have a
single lecturer who is responsible for both lectures.

[Simone Barbosa] How do you deal with an order that cancels another order that was
partially executed? Would you then need to model all the other partially executed
tasks?

[Carsten Eicholz] There is nothing in our model to explicitly handle this.
Perhaps one would need to specify each "canceling" workflow separately and
have it selected if needed.

[Simone Barbosa] So you would have to model these as separate independent
workflows?

[Carsten Eicholz] Yes, we would need a new workflow model to do that.

[Michael Harrison] The reason for modeling workflow is so you can ask questions of
the workflow. E.g. an auditor would want to know who signs off on purchases. Have
you thought about how you would inspect workflows.

[Carsten Eicholz] No, we have a straight-forward approach where the absract
modelling is only done at the beginning. We don't save all of the adaptations.

Using Task Modelling Concepts for Achieving Adaptive Workflows 111

We have the idea of saving such a library, where we save and preserve all
these tasks for analysis, to see what can be optimized. But this is not
currently included.

[Juergen Ziegler] How do you model splits and joins in this model.

[Carsten Eicholz] The splits should be clear--parallel execution. A join--in
what case do we have a join?

[Juergen Ziegler] In some processes you have joins, e.g. building a car you have
separate processes that have to come together.

[Carsten Eicholz] Our approach is completely different from net-based
approach that is common in process modelling. We are hierarchical. So a
join must be represented as the super-task of two sub-tasks. It cannot be
visualized by a join as in an activity diagram.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 112-128, 2005.
 IFIP International Federation for Information Processing 2005

Mixing Research Methods in HCI: Ethnography Meets
Experimentation in Image Browser Design

T.C. Ormerod1, J. Mariani1, N.J. Morley1, T. Rodden2, A. Crabtree2, J. Mathrick2,
G. Hitch3 & K. Lewis3

1 Lancaster University, Lancaster, LA1 4YD, UK
{t.ormerod; j.mariani; nicki_morley}@lancaster.ac.uk

2 Nottingham University, Nottingham, NG8 1BB, UK
{tar; a.crabtree; jym}@cs.notts.ac.uk

3 York University, York, YO10 5DD, UK
{g.hitch; k.lewis}@psych.york.ac.uk

Abstract. We report the specification and evaluation of a browser designed to
support sharing of digital photographs. The project integrated outcomes from
experiments, ethnographic observations, and single-case immersive
observations to specify and evaluate browser technologies. As well as providing
and evaluating new browser concepts, a key outcome of our research is a case
study showing the successful integration of ethnography and experimentation,
research and design methods that are often viewed as orthogonal, sometimes
even mutually exclusive, in HCI.

Keywords: Ethnography, controlled experimentation, digital photographs,
browser design and evaluation.

1. Introduction

1.1 Methods for Specifying Technologies

In the search for appropriate ways to specify and evaluate user-centered technologies,
researchers and developers are increasingly turning away from laboratory-based
controlled interventions towards more contextually-rich methods for studying user
behaviours. This shift is exemplified by the emergence of ethnography as a method
for informing systems design [1, 2]. Ethnography offers a non-invasive approach to
observing rich social interactions around technologies in-situ. The approach facilitates
the recognition of important exceptions and exemplars that inform technologies for
supporting best practice, as well as revealing common patterns of activity. The shift in
methods has partly been at the expense of controlled experiments that sacrifice
detailed description of context and outliers in favour of factorial descriptions of user
activity patterns. Indeed, proponents of ethnography [3, 4] cite limitations of
experimentation as a key motivator for adopting an ethnographic stance.

Despite the advantages that accrue from ethnography, there is still a role for
controlled empirical methods. Ball & Ormerod [5] point to the need for verifiability
of observations to justify investments in technology, and the need for specificity and

Mixing Research Methods in HCI 113

goal-directedness to focus upon the design imperative, as key reasons why designers
need to supplement ethnographic data with controlled empirical studies. A further
reason comes from the fact that people, both users and observers, are not always
aware of or able to report the processes that influence their behaviour [6]. Hypothesis-
driven experiments can reveal implicit influences on behaviour that affect user
activities with information technologies.

Digital photography provides a domain that illustrates the relative merits of
ethnographic and experimental approaches. Photographs are inherently social
artifacts: the reasons for taking pictures, the uses we put them to, and the ways in
which we handle, store and reveal them are guided by the context of use. To specify
technologies for digital photography without conducting some form of ethnographic
study risks underestimating the complex social activities that surround image
handling. Yet, the ways in which individuals categorise, remember and subsequently
recall information about photographs will also play a key role in determining the
success of image handling technologies. Like many aspects of human cognition, these
memory-based processes are not easy to observe or report.

We have previously argued [5] that ethnographic methods can and should be
combined with other research techniques to properly inform user design. Other
exemplars of research programmes that mix experimental and observational methods
(e.g., case studies) in HCI exist [7]: This paper focuses upon mixing experimentation
with an ethnographic approach to design and evaluation in HCI. In the remainder of
the paper, we report empirical studies that use three research methods to inform the
design of image handling technologies, and the development of a photo browser
prototype that reflects the findings of these studies. The studies used experimentation
to investigate the feasibility of interventions to reduce collaborative inhibition,
ethnography to identify natural categories of shared encoding cue, and a detailed case
observation to validate the feasibility of our chosen encoding approach. Evaluation of
the browser again used experiments to assess the relative strengths of a prototype
photo browser against a commercial alternative.

1.2 Digital Image Handling

There is a growing shift from chemical to digital photography, with mass-market and
low-cost technology becoming commonplace within homes and families. As the
digital camera grows in popularity, the number of images that individuals and groups
store and handle can increase dramatically. An important consequence of
digitalization is that photographs lose their physical availability. Physical artifacts
provide retrieval cues for photographs (e.g., ‘the shoe box under the bed full of
wedding photographs’) that are lost in digitalization [8]. From a situated perspective,
methods for sharing non-digital photographs are central to how they are used. For
example, traditional photograph albums serve as a constructed way of sharing
information, often representing a collective familial resource. Methods for sharing
images are likely to change greatly when photographs are stored on computers.
Internet-based image transfer opens up new opportunities to share photographs across
virtual communities, changing the nature of image communication and ownership in
as yet poorly understood ways.

114 T.C. Ormerod et al.

A number of different forms of software exist to manage digital images. Many
commercial and research applications offer single-user query-based approaches to
retrieval, with commands based on filename (i.e., a name of a photograph), user fields
and keywords assigned by the user to photographs. Commercial browsers focus upon
management of disk space for storing images (e.g., Thumbplus, Jasc). A number of
research projects have also examined human-centred issues in image handling. For
example, the Maryland PhotoFinder project [9] offers a browser for personal image
management that supports encoding and retrieval through novel interface features for
Boolean searches and visual overviews of search match results.

Other projects have focussed upon image sharing. For example, the Personal
Digital Historian (PDH) is a table-based environment around which users collaborate
to construct stories around a set of images [10]. One interesting feature of the PDH is
the use of an image categorization scheme based around four dimensions that describe
who the image pertains to, what the subject of the image is, where it was taken, and
when it was taken. User selections under each dimension are combined automatically,
providing an innovative solution to problems associated with constructing Boolean
searches. Intuitively, the ‘Who, What, Where and When’ scheme captures the main
episodic dimensions associated with the event portrayed by an image.

1.3 Psychological Studies of Memory

Studies of autobiographical memory suggest that ‘Who, What, Where and When’
dimensions play a key role in remembering. For example, Wagenaar [11] kept a diary
in which he noted personal events over a period of some years. Subsequently he tested
his ability to recall details of individual events by cuing himself with features such as
who was involved, what happened, where and when the event took place or
combinations of these cues. Among his findings were that 'when' is a poor cue and
that combinations of cues are in general more effective than single cues.

There are other aspects of psychological research into human memory that might
inform the development of image handling technologies. For example, a number of
studies have demonstrated an effect of collaborative inhibition. In these studies,
participants learn items individually, and subsequently recall the items either
collaboratively (e.g., in pairs) or on their own. The effect is demonstrated when the
total number of unique items recalled by groups is less than that recalled by nominal
pairs made up of individuals recalling on their own [12]. The locus of the effect
appears to be at retrieval: cues reflecting the subjective organization that one
individual imposes upon information at encoding inhibit the subjective organization
of a collaborating individual and so suppress their recall contribution [13]. If
individuals who recall together have also encoded together, they tend to share the
same subjective organization of the material, and an effect of inhibition is not found
[14]. Collaboration at encoding reduces the incompatibility between cues generated
by one individual and the subjective organization of the other individual.
Technologies for sharing images that organize encoding and retrieval around
individuals’ categorisation preferences may provide precisely the conditions under
which collaborative inhibition arises. The corollary to this argument is that image-
sharing systems need to provide dimensions for encoding images that are common to
collaborating users.

Mixing Research Methods in HCI 115

2. Experimental Manipulations to Reduce Collaborative Inhibition

The collaborative inhibition effect presents a challenge to the development of image
handling technologies, since it suggests that an individual’s organization of
information at encoding may inhibit later retrieval of the same information by others.
To address the problem, it was necessary first to find further evidence that
collaborative inhibition effects can be reduced by appropriate interventions. If the
effect arises because individuals impose different subjective organizations at
encoding, then eliciting shared encoding categories might ameliorate the effect.
Below we describe one experiment that investigated how self-determined
categorization influences collaborative recall of image categories. It tested a
prediction that partners who organise material similarly will show less collaborative
inhibition than those who organise differently.

2.1 Method

Participants. Eighty undergraduate students from York University were paid £10
each to take part.
Design and materials. Participants were assigned to one of two groups, comprising
either nominal pairs or pairs who collaborated at retrieval. Nominal pairs were made
up by combining data from participants recalling alone to allow comparison with
collaborating participants. Each of these groups was further divided, participants
being paired with a partner who generated either the same or different categories
when encoding the materials. Materials consisted of image labels of famous people
(Elvis Presley, Margaret Thatcher, Britney Spears, etc.), which could be organised
along various dimensions (e.g., gender, occupation, country).
Procedure. Encoding and retrieval phases were separated by approximately one
week. In the encoding phase, participants sorted word sets into two self-determined
categories. In the recall phase, participants recalled word sets collaboratively or alone
(for nominal pairs).

2.2 Results and Discussion

Figure 1 illustrates the recall performance of each group. A two-way analysis of
variance on these data showed significant effects of type of pair (nominal versus
collaborating), F(1, 36) = 37.0, MSe=4.11, p<.01, and of coding category (same
versus different), F(1, 36) = 6.4, p<.01. Most importantly, the interaction between
these factors was significant, F(1, 36) = 6.4, p<.01. These results indicate that, while
collaborative recall by pairs with the same encoding categories (17.3/40 items) was
similar to nominal pair recall with both same and different encoding categories
(19.6/40), collaborating pairs who had different encoding categories showed the effect
of collaborative inhibition (14.1/40).

A second experiment examined whether the same effects are found when the
dimensions for sorting are imposed externally. The stimuli comprised words that
could be organised into three-member groups, either associatively (e.g., shepherd,

116 T.C. Ormerod et al.

sheep, wool) or categorically (e.g., shepherd, chef, fisherman). Participants sorted
items associatively or categorically. Individual recall was unaffected by sorting
associatively or categorically. Collaborating pairs who sorted items according to
different criteria recalled less (29/45 items) than nominal pairs (33/45 items). In
contrast, collaborators who encoded items according to the same criteria showed no
inhibition (34/45 items).

These experiments suggest that methods to increase the similarity of subjective
organizations that individuals bring to encoding information will enhance
collaborative retrieval. A reduction in collaborative inhibition was found both with
explicit presentation of organizational schemes at encoding and when individuals with
self-determined schemes were paired with like-minded participants. However, the
experiments leave open the question as to which category labels might suit image
sharing best. It appeared, from the results of both experiments, that there is no one
semantic dimension that is superior to any other in enhancing retrieval. Thus, in the
next phase, we turned to ethnographic studies to investigate whether natural accounts
of image sharing yield dimensions appropriate for instantiation within image handling
technologies.

Fig. 1. Recall by collaborating and nominal pairs, sorts by partner having same or different
categories.

3. Ethnographic Studies of Families and Photographs

We undertook ethnographic studies of how photographs are handled and involved in
everyday activity across a number of families. The studies build upon the work of
Frolich et al [8], who used home-based interview and diary-keeping methods to
examine how families manage photographs. Among the important observations made
by Frolich et al was the multiplicity of archiving approaches adopted (e.g., special
project mini-albums), and the social nature of co-sharing of physical photographs, a
process that was not easily supported by digital media. The aim of our studies was to
provide a broad background for on-going experimental investigations, illustrating the
different forms of interaction that surround photographs within the home. Below we
offer specific examples of issues that informed the refinement of an encoding
approach within the TW3 browser prototype.

Photographs differ from other forms of record because of the cultural significance
of photographs within family life. Perhaps the most significant thing to note is the

0

5

10

15

20

25

Same Different

real pairs
nominal pairs

Mixing Research Methods in HCI 117

ways in which photographs find their way into the set of everyday activities central to
our family lives. One of the most visible aspects of photograph use in the home is the
symbolic and decorative role they assume. Photographs of family members in
particular are displayed around the home in prominent positions. They recall people
that are important to us, significant events in our lives, places that visit and memories
of past times.

The framed photographs made visible in our homes provide a public display of our
family lives and the episodes that make up the family history are often placed on
displace for public inspection. These photographs fine their way into the everyday
fabric of our home. Figure 2 exemplifies the everyday settings within which
photographs are routinely placed. With one family group we studied, photographs
were kept in boxes, bags, and albums according to the significance of particular
ensembles:
1. Pictures of a family wedding were kept in simple but ornate boxes.
2. Pictures of the householder’s own wedding were kept in specially made album,

which in turn was kept inside a white cloth cover to protect the album.
3. Pictures of children over the years were kept in another album.
4. An ongoing project (a photographic family tree) was kept in a folder of plastic

wallets inside a shopping bag underneath the cupboard ‘ready to hand’.
The storage of photographs may seem haphazard, but it is possible to detect an

organizing principle informing storage. Thus, wedding photos are kept in formal
albums, pictures of a child over the years in a less formal, more sentimental album,
pictures of another’s wedding in simple decorative boxes, whereas ordinary photos
are left in the packing they came in and may be thrown together in a large box,
ongoing projects might be placed in a plastic bag, and so on. Each of these concrete
storage arrangements reflects, for members, an order of significance such that the
meaning of any particular ensemble can be seen-at-a-glance. Some orders of
significance are thoroughly social; the use of special wedding albums is widespread
for example, whereas others, such as storing photos of special occasions in simple but
decorative boxes, are more personal and idiosyncratic.

By inference, one can interpret the arrangements of use we have observed as a
physical instantiation of implicit categorization by Who, What, Where and When
dimensions. However, the conceptual separators underlying these physically separate
collections map onto Who, What, Where and When dimensions in interesting ways.
For example, some events are clearly demarcated by all four dimensions (e.g., picture
of a recent family celebration such as a Christening). Others lose one or more
dimensions as organizing principles (e.g., collections of photographs of children over
the years).

The majority of photographs, rather than being on public display, are brought out
to be shown to visitors and friends, and in the showing to be used to explain the
events surrounding then. A family member who puts the photographs away normally
mediates this process. For example, in Figure 2, we see a collection of photographs
(kept in a plastic carrier bag) being retrieved. Once retrieved from their normal place
of storage, broad collection becomes a resource at hand to support the telling of
stories.

118 T.C. Ormerod et al.

Fig. 2. Photographs retrieved from hiding place.

Analysis of conversations shows how identifying the ‘Who’ of a photograph is
built up from the physical manipulation of artifacts and from an emerging interactive
discourse that relies on a specific family member, the mediator, to supply the
recognition information, with new participants being drawn into the discourse as it
unfolds. A unifying feature of the studies is the emphasis upon collaborative
descriptions of images. What matters is not the taxonomic status of an image (as
investigated in the experimental phase) but its situated characteristics, in terms of
time, place, and involvement of people. These episodic cues are drawn upon as part of
the storytelling surrounding the presentation of photographs across a grouping. This
emphasis upon episodic descriptions is similar to that which is apparent in
Wagenaar’s [11] study of autobiographical memory.

4. Single-Case Observation of Image Encoding and Retrieval

We conducted an in-depth study of the efficacy of a category scheme for photograph
collections for one individual. The aim of the study was to validate design hypotheses
for image browsers, notably the usability of a Who, What, Where, and When
encoding and retrieval scheme. The study addressed three questions: first, can these
dimensions be used effectively, and, in particular, how efficient is encoding? Second,
do the categories discriminate well among items within a personal photograph album?
Third, do the dimensions provide sufficient cues at recall?

The study focused upon the photograph collection of a married couple. The male
member of the couple provided access to, and an overview of, a large set of
photographs collected both before and since marriage. In the encoding phase, we
elicited descriptive categories from his partner for 200 photographs selected from this
collection. She then sorted photographs into categories under each of the Who, What,
Where, and When dimensions. A week later, the participant gave each of the
photographs a title.

Results of the encoding phases showed that sorting under the scheme was
meaningful to the participant. The participant spontaneously chose no more than six
categories on each of the four dimensions, with some overlap of subcategory label
between different dimensions. Measures of fan size (the number of photographs that

Mixing Research Methods in HCI 119

received exactly the same categorical assignment under the four dimensions) varied
over the photographs, reflecting marked asymmetries in the use of the coding space
(see Figure 3). In essence, the majority of photographs were categorised uniquely
under the four dimensions, though some instances of large sets (up to 23
photographs) received identical categorisation under all four dimensions.

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23

Fan size

Fr
eq

ue
nc

y

Fig. 3. Fan size during encoding phase (= no. of images encoded with same categories under
Who, What, Where, and When dimensions; Frequency = instances of each fan size).

In the retrieval phase, four different procedures were used to vary retrieval cue and
task (recall of photograph codes or titles versus recognition of photograph). Each
procedure was evaluated using a different set of 24 photographs with varying fan
sizes. Comprehensive recall of titles was poor (25% correct), as was recall of the
codes used for each photograph (accurate recall of all 4 subcategories for only 54% of
photographs). However, individual dimension recall was good (averaging 3
subcategories per photograph). Furthermore, code recognition was high (86% of
photographs had all four codes accurately recognised). Overall the results suggest that
the coding scheme was effective for recognition-based retrieval. Importantly, many of
the errors in the retrieval phase were errors of commission (i.e. the participant
including known photographs in her recall that were not among the 24 target items).

In summary, the case study provides some supportive evidence for a Who, What,
Where and When scheme at both encoding and retrieval. The implication of the fan
size results is that a browser must offer a categorization scheme that is extremely
flexible, because the majority of photographs receive a unique categorisation. A two-
level scheme such as that used in the case study, in which up to six categories are
created under each dimension, allows 46 (or 4096) unique categorizations. Whether
this space is sufficient to capture a large image set depends upon the extent to which
images can be meaningfully categorized together. Further work is in progress to
investigate the efficacy of the scheme for image sets of 1000+ that come from
multiple sources (photographs from a decade of news articles).

When errors were made they were errors of commission. The implication for a
browser is that if only one sorting code is incorrectly recalled, the target photograph
will not be found. However, we found that if any one of the four codes was ignored, a
larger but manageable set of photos was retrieved with a high probability of
containing the target. This pattern suggests a two-stage browser search mechanism in
which the user can enter partial cues when not all of them can be remembered, and

120 T.C. Ormerod et al.

then visually scan the resultant set of retrieved photos for the target. A further
implication is that while collaborative users will share a generic 'what' where' 'when'
'who' organizational scheme, they will typically differ in the categories they use
within this shared scheme. We hypothesize that limiting categorization to four key
dimensions, each with six categories to be specified by the user at encoding, will
maximize the degree of overlap across the subjective organizations of multiple users.
Where category systems differ among users, or where the search under four
dimensions fails to yield a result, the gradual removal of one of the four dimensions
will increase the degree of similarity among coding schemes and allow users to
recover items for which one or more of the encoding categories has been forgotten.

5. The TW3 Browser Prototype

The case study provided validation for the use of an episodic organization scheme
based around Who, What, Where, and When dimensions. In principle, there are a
large number of ways in which such a scheme might be delivered within a browser,
and the remainder of the TW3 project is exploring how these approaches might be
optimized. The first prototype embodies the scheme explicitly as a procedural
encoding and retrieval task.

The prototype is implemented as a Java point-and-click interface to a MySQL
database. Figure 4 illustrates the encoding interface. The TW3 browser requires users
to work through categorization under four dimensions. The user can code all
photographs under one dimension at a time, or code each photograph under all four
dimensions in parallel. Usability tests to date suggest that users require the capability
to switch between encoding modes in real time during a single encoding run. Initially
they typically choose to step through categories one by one. Once categories under
each dimension become stable, however, some users prefer to switch to a mode of
encoding each photograph under all four dimensions at once.

 The retrieval mode uses the category structure created at encoding as cues to guide
photographic description under each dimension. We make no use of user-assigned
descriptive titles or keywords, since the case study pointed towards the inadequacy of
labeling or keyword approaches. Moreover, early file-naming studies showed that
file-naming even among experts yielded little consistency [15], a finding echoed by
our own results in the experiments reported above, suggesting that keyword and label
approaches will not support collaborative retrieval.

Items are retrieved according to their degree of fit with the categories under Who,
What, Where, and When dimensions. If the target photograph remains undetected, the
user can step through the dimensions, investigating the effects of removing each
dimension in turn. By expanding on the retrieved sets with one dimension missing,
the user is able to see a ‘best fit’ selection and discover the missing picture. In this
way, the scheme allows an option to use partial encoding cues that are likely to offer a
close match to the target items. In this respect, our use of a Who, What, Where and
When scheme differs from that of Shen et al [10], who manipulate each dimension
separately. Wagenaar’s [11] results suggest that additional power for retrieval might
gained by allowing the user access to these dimensions in parallel, and that the
systematic dropping of dimensions that are uninformative at recall can guide people
to the correct target set.

Mixing Research Methods in HCI 121

Fig. 4. The TW3 encoding tool. Photographs are presented as a stack (top center) ready for
classification. The user categorizes under Who, What, Where and When dimensions in turn.
The user can assign photographs to up to six categories for each dimension. Photographs can be
magnified and categories expanded overview membership.

Perhaps the key difference between the TW3 prototype and other (e.g.,
commercially available) browsers is in the role of constraint. For example, other
browsers tend to allow unlimited expansion of coding dimensions and categories
(e.g., using a folder and sub-folder metaphor, labeling individual photographs with
category tags), whereas the TW3 browser constrains encoding to four dimensions, and
allows only six categories under each dimension. Also, because encoding is relatively
unconstrained in other browsers, there is no restriction on the kinds of dimensions that
users may use: they are just as likely to classify photographs semantically as
episodically. In contrast, the Who, What, Where and When approach of the TW3
browser effectively constrains the user to an episodic category scheme. Moreover, the
ways in which users retrieve photographs in other browsers is typically unconstrained:
users can search for named photographs by keyword, or add and change as many label
tags to photograph searches that they wish, when they wish. In contrast, to retrieve a
photograph in the TW3 prototype, users must select categories under each of four
dimensions. If the required photograph is not found, users are constrained to dropping
one dimension at a time.

While this level of user constraint is uncommon (indeed, arguably, it is generally
frowned upon) in user-centered design, we hypothesise that it might prove crucial to
successful sharing of digital images. For example, constraint on encoding increases
the relative likelihood and degree of overlap between different peoples’ subjective
organizations of photograph collections. Also, the inclusive use of all four dimensions
during retrieval, followed by their systematic removal to continue to search, provide a

122 T.C. Ormerod et al.

procedural structure to guide the process of recovering from error (i.e., knowing what
to do next if your first attempt does not yield the desired photograph).

6. Experimental Evaluation of the Browser Prototype

The TW3 browser prototype reflects a number of design hypotheses and assumptions.
Perhaps the most fundamental assumption is the one derived from the psychological
literature on collaborative remembering, namely that there might be a problem in
retrieving photographs that are stored under someone else’s coding categories. Then
there is the issue of the Who What Where and When coding approach itself – it offers
commonality between individuals at the level of dimensions under which categories
are specified, but it is not clear whether this will hinder or help the process of
photograph encoding and retrieval relative to browsers that do not fix the dimensions
under which individuals categorise photographs. Another hypothesis concerns the
restriction to six categories under each dimension. This limit was based upon
empirical observation, yet its effects on browser performance cannot be easily
predicted.

One approach to evaluating the prototype might be to employ an ethnographic
approach, situating the browser in, say, a family context and observing over a number
of weeks or months how peoples’ activities around photograph handling are supported
or changed by the imposition of the new technology. Indeed, we are adopting this
approach in studies currently in progress on a substantially revised second prototype.
However, we chose in the first instance to conduct a controlled experimental
evaluation of the browser prototype, for three main reasons. First, an experimental
evaluation allowed us to collect comparative data that pits our prototype against a
commercially available browser, in this instance, the Adobe™ Jasc browser. Second,
we were concerned that a situated evaluation of the browser might provide an unduly
negative outcome for the simple reason that the TW3 browser was an early prototype
with all the lack of functionality and irritations that early prototypes tend to have. In
particular, we felt that users would be likely to abandon use of the browser
prematurely, regardless of any merits that its key design features might bring, simply
because of fixable prototype limitations. Third, we wanted to investigate whether the
browser does address problems of shared encoding and retrieval using measures of
search and retrieval which would simply not be observable using ethnographic
methods.

The comparison between TW3 and Jasc browsers is not intended to be simply one
assessing relative performance: we confidently expected the Jasc browser to outstrip
our prototype on a majority of performance measures, if only because it is a properly-
tested and fully-functional piece of commercial software developed for market by a
team of designers, programmers, and testers. We were interested only in how the
TW3 prototype compared with the Jasc browser in terms of change in performance,
both across conditions (notably, when retrieving from ones own codes compared with
retrieval using someone else’s codes) and within conditions (notably, how the
browsers fared in terms of recovery from failure to find photographs). In some
respects, one might not expect major differences between the two browsers. In
particular, the Jasc browser comes with three pre-configured tag dimensions, of

Mixing Research Methods in HCI 123

People (i.e. who), Event (i.e., what) and Place (i.e., where), with only the time-based
tag missing. Where differences emerge, they must then reflect user preferences to
make use of the freedom within Jasc to create their own categories and ignore system-
set ones.

6.1 Method

Participants. 28 undergraduate and postgraduate students from Lancaster University
were paid £10 each to take part.
Design and materials. Materials consisted of 200 photographs of members of the
British royal family or places and events relating to them, gathered from a trawl of
Internet media sites. Participants were assigned to one of two groups. One group used
the TW3 browser to encode and retrieve photographs, the other used the Adobe Jasc
browser (the free demonstration version available on the Adobe web site). For the
retrieval phase of the experiment, each participant was nominally paired with another
participant from the same group, matched by average encoding time. A second
(within-subjects) factor in the retrieval phase was whether participants retrieved
photographs using their own codes or those of their nominal pair.
Procedure. Encoding and retrieval phases were separated by approximately one
week. In the encoding phase, participants were first shown all 200 photographs at a
rate of 2 seconds per image. They then encoded each of the 200 photographs. For
participants using the TW3 browser, they coded each photograph in a category under
each of the four dimensions before proceeding to the next photograph, the categories
(maximum = 6) emerging during the encoding process. For participants using the Jasc
browser, they encoded each photograph by assigning either system-set or new tags
(i.e., category labels). In the retrieval phase, participants retrieved 30 photographs
using their own codes and 30 different photographs using their nominal pairs codes.
Each photograph to be retrieved was presented on paper, and the participant’s task
was to find the photo in the browser by selecting categories under each dimension
(TW3) or tag sets (Jasc).

6.2 Results and Discussion

The average time taken to encode each image was significantly greater with the Jasc
browser (38.4s) than with the TW3 browser (20.6s), t=7.85, p<.01. The fact that
encoding times were nearly twice as long with the Jasc browser is probably a function
of the number and complexity of tags assigned to images compared with the limited
categories used with the TW3 browser.

Table 1 shows the average number of tags/categories created under each
dimension. Interestingly, tags under the Event and Place dimensions created with Jasc
are comparable, quantitatively at least, with those created under What and Where with
the TW3 browser. The People dimension appears to have been encoded at a much
greater level of detail with Jasc than with TW3. This may result from the use of
multiple overlapping tags in Jasc (e.g., “Charles”, “Diana”, “Charles with Diana” as
separate categories), a strategy that is effectively blocked by the category limit within
TW3. The ‘other’ dimension of Jasc is not comparable with the ‘when’ dimension of

124 T.C. Ormerod et al.

TW3, since the former refers to all tags created by the user that did not fall within the
system-set dimensions whereas the latter refers to the time dimension. What is clear is
that users were making use of the flexibility inherent within Jasc to create many
personalized coding categories.

Table 1. Mean number of tags/categories created under each dimension using Jasc/TW3
browsers at encoding.

 Who/Person What/Event Where/Place When/Other
TW3 6.0 5.6 5.2 4.2
Jasc 24.2 6.2 6.9 19.3

Table 2 shows retrieval performance with the two browsers under a number of

measures. A significant interaction was found between Browser and Code factors in
the number of photographs retrieved at the first attempt, F(1, 26) =8.94, MSe=5.61,
p<.01. The Jasc browser gave the highest level of retrievals at the first attempt,
particularly with own codes. This result suggests that, as long as you find a
photograph first time and you are the sole user of a collection, the Jasc browser is the
better of the two.

Table 2. Mean number of photographs retrieved (N = 30) on first attempt, and overall (i.e. after
dropping categories or adding extra tags), and mean time to retrieve image.

 No. found at
first attempt

No. found
overall

Mean retrieval
time (s)

TW3 with own codes 14.4 24.4 35.5
TW3 with others
codes

10.7 23.2 36.8

Jasc with own codes 18.2 23.6 40.9
Jasc with others
codes

10.8 18.4 47.0

A significant interaction was also found for the number retrieved overall, F(1, 26)

=9.87, MSe=6.09, p<.01. It appears that, while there is no advantage for either
browser when retrieving using ones own codes, the TW3 browser leads to greater
retrieval using someone else’s codes. Indeed, performance is comparable with using
ones own codes with the TW3 browser. Thus, the main advantage of the TW3
browser appears to be in recovering from a failed first attempt to find a photograph
using someone else’s codes.

A main effect of Browser was also found with retrieval times, F(1, 26) =5.44,
MSe=209.8, p<.05, though the interaction between Browser and Code factors was not
significant. It seems likely that the advantage for the TW3 browser is a result of
different strategies for finding a photograph after a failed first attempt. With the TW3
browser, users were limited to dropping each dimension in turn in order to inspect
whether the required photograph had been mis-categorised or mis-recalled under that
particular dimension. With the Jasc browser, users were also able to drop tags, but a
much more common strategy was to add another tag in order to combine the results
from tag categories. As well as taking longer to execute, this strategy was limited in
effect. While it could deal with errors of omission (photographs not classified under a

Mixing Research Methods in HCI 125

particular tag dimension), it was less successful in dealing with errors of commission
(i.e. photographs wrongly classified or mis-recalled under a particular tag dimension).

The results of the study confirm our key hypotheses. First, there is a detrimental
effect of trying to retrieve photographs using another persons coding scheme. This
result is not surprising in theoretical terms, but it has important practical implications
for the design of collaborative browsers. Second, the Who, What, Where and When
scheme seems to provide an efficient and effective set of dimensions and procedure
around which to configure a browser. The study is, of course, limited to a particular
observation and set (and size) of materials. It may be, for example, that a less
favorable outcome would be found with less familiar materials (e.g., archeological
shards) and with larger sets of photographs, especially when they are encoded over a
longer and more fragmented time frame.

Of key importance, it appears that the two browsers are optimized for different
contexts of use. The Jasc browser appears best suited to individual users maintaining
photograph collections for private use, where they can code photographs in uniquely
meaningful ways. In line with our hypotheses, the TW3 browser appears to be better
configured to support collaborative use of photographs. While first-attempt retrieval is
perhaps disappointing with the TW3 browser, recovery is as strong as with the Jasc
browser using ones own codes, and more importantly, it is much better when using
someone else’s codes.

7. Conclusions

The design of the TW3 prototype was informed by converging results from three
empirical methods that are often seen as diametrically opposed to each other.
However, we argue that each can offer an essential and unique contribution to
systems design. The experiments demonstrated the potential for categorization-based
interventions to enhance collaborative retrieval. The brief sample from a longer
ethnographic study highlights the point that photographs are routinely viewed as part
of a collaborative set of activities and are used to support a broader set of social
activities across the family. The case study showed how a four-dimensional scheme
can offer a simple yet powerful approach to encoding and retrieving digital images.
The case study also illustrates how methods used in experimental studies can be
applied in more naturalistic and rich observational studies.

These ideas have come together within a set of image browsing tools that allow
users to collaborate in encoding and retrieving images while supporting them in
overcoming a major source of difficulty, namely errors of commission. The aim is to
develop equivalents of social discourse around images for digital technologies. While
researchers have explored the development of different presentation techniques for
this purpose [16, 17], we are more interested in how digital photographs will be stored
and retrieved as part of this process.

Experimental demonstrations of collaborative inhibition point to a phenomenon
that must be addressed in all systems designed for collaborative use. The ethnographic
studies provide support for an episodic approach to collaborative encoding and
retrieval. The dominance of episodic discourse around photographs is consistent with
results from the case study, notably the finding that recall of photographs by semantic

126 T.C. Ormerod et al.

keyword was very inefficient compared with recall by episodic category. This finding
suggests that query-based approaches are of limited efficacy in managing large image
sets, and do little to address problems of collaboration.

The importance of understanding contexts of use is emphasized by the results of
the comparative evaluation, where it appears that the Jasc browser is optimized for
individual use while the TW3 browser is better for shared use (albeit tested here in a
context where users worked individually with codes produced by a nominal partner).
As one encounters other contexts of use, this pattern might change. For example, it is
possible that in professional contexts (e.g., commercial photo libraries), the
advantages of detailed coding of individual photograph characteristics may outweigh
the benefits of a restricted coding scheme.

The studies reported here show how different methods make valuable contributions
to the design and evaluation of interactive systems. In planning empirical studies that
inform design, there are competing pressures. The need for ecologically valid
observation or real contexts of use must be balanced against the efforts required to
collect data and the costs of early commitment to prototypes that can be evaluated in-
situ. At the same time, there must be a recognition that no single method can provide
everything a designer needs. Our mixed method approach allows both situated
observation of contexts of use and also detailed assessment of the impacts of
cognitive phenomena that are otherwise hard to observe and measure.

Acknowledgements

The TW3 project is supported by the ESRC/EPSRC ‘People at the Centre of
Communications and IT’ initiative, L32830300198. We thank Fleur Finlay and
Rachel Attfield for help with the experiments.

References

1. Hammersley, M., Atkinson, P.: Ethnography: Principles in practice. Routledge, London
(1983)

2. Hughes, J.A., King, V., Rodden, T., Andersen, H.: Moving out from the control room:
Ethnography in system design. In Proc. CSCW ’94, Chapel Hill, North Carolina (1994)

3. Hutchins, E.: Cognition in the wild. Cambridge, MIT Press, MA (1995)
4. Suchman, L.: Plans and situated actions: The problem of human-machine communication.

CUP, Cambridge (1987)
5. Ball, L. J., Ormerod, T. C.: Putting ethnography to work: The case for a cognitive

ethnography of design. Int. J. Human-Computer Studies 53 (2000) 147-168
6. Nisbett, R., Wilson, T.D.: Telling more than we can know: Verbal reports as data.

Psychological Review. 84 (1977) 231-259.
7. Murphy, G.C., Walker, R.J., Baniassad, E.L.A.: Evaluating emerging software technologies:

Lessons learned from assessing Aspect-Oriented programming. IEEE Trans. on Software
Engineering, 25 (1999) 438-455

8. Frolich, D., Kuchinsky, A., Pering, C., Don, A., Ariss, S.: Requirements for photoware.
Proc. CSCW 2002, New Orleans, ACM Press (2002) 166-175

Mixing Research Methods in HCI 127

9. Kang, H., Shneiderman, B.: Visualization methods for personal photo collections, Proc.
IICME 2000, New York: IEEE Computer Society (2000)

10.Shen, C., Lesh, F., Vernier, F., Forlines, C. Frost, J.: Sharing and building digital group
histories. Proc. CSCW 2002, New Orleans, ACM Press (2002) 324-333

11.Wagenaar, W. A.: My Memory: A study of autobiographical memory over six years.
Cognitive Psychology, 18 (1986) 225-252

12.Weldon, M.S., Bellinger, K.D.: Collective memory: Collaborative and individual processes
in remembering. J.Exp Psych: Learning, Memory & Cognition, 23 (1997) 1160-1175

13.Basden, B. H. Basden, D.R., Bryner, S., Thomas, R.L.: A comparison of group and
individual remembering: Does collaboration disrupt retrieval strategies? J.Exp Psych:
Learning Memory & Cognition, 23, (1997) 1176-1191

14.Finlay, F. Hitch, G., Meudell, P.: Mutual Inhibition in collaborative recall: Evidence for a
retrieval-based account. J.Exp Psych: Learning Memory & Cognition 26 (2000) 1556-1567

15.Furnas, G.W., Landauer, T., Gomez, L. Dumais, S.: Statistical semantics: analysis of the
potential performance of keyword systems. Bell Systems Technical Journal, 62 (1983)
1753-1806

16.Balobanovic, M. Chu, L.L., Wolff, G.J.: Storytelling with digital photographs, Proc. CHI
2000, Amsterdam, ACM Press (2000) 564-571.

17.Vernier, F., Lesh, N. Shen, C.: Visualisation techniques for circular tabletop interfaces. AVI
2002, Trento, Italy, ACM Press (2002)

Discussion

[Michael Harrison] About titles and their semantics. What does it mean to fail to get
the semantics right?

[Tom Ormerod] Both recall and recognition of photo titles were very poor.
Elements of the description didn't match more than 50% of the titles.

[Bonnie John] Are a lot of your results because of specific features of the photos you
used? E.g., Relatively few (hundreds not thousands). Maybe the six categories is just
because there are so few, which would be different if there were a lifetime of photos.
Not many that are actually photos of the same thing (e.g., the professional
photographer did more of the exact same labeling, perhaps because professionals take
many of the same thing, so why wouldn't there be the same label? -- and as people
understand that digital cameras don't waste film, they'll take many of the same thing,
too.).

[Tom Ormerod] That's what I was trying to say on the last slide -- we don't
know the exact locus of the effects we report. However, we have ongoing
work with professional image colelctions where volumes are 20000 images
plus. So far, results are promising.

[Hong-Mei Chen] Do you intend to generalize your research results beyond the
family photo retrieval system to a general image retrieval system?

[Tom Ormerod] Yes. We are currently exploring possibilities such as PDF
file retrieval.

128 T.C. Ormerod et al.

[Hong-Mei Chen] I think it may have some difficulties as family photos, as Bonnie
pointed out, may have a lot of similar photos and the precision of retrieval may not be
as critical as other applications such as document retrievals.
In addition, in your experiment, you used the British Royal family photos instead the
subjects' own photos, that may affect your experimental results applicable to family
photo retrievals as most people have intrinsic memories associated with their own
photos.

[Tom Ormerod] I don't really have answers to the first part of this question.
However, we did an experiment looking at couples who handled their own
photos, encoding either together or separately. To our surprise, we got
similar effects with these personalised materials.

[Joaquim Jorge] Have you thought of methods for automatically capturing metadata ?
People are not very adept at cataloguing photos and documents.

[Tom Ormerod] Metadata can be re-used, e.g. when taking a series of photos
on the same subjects. Also when temporal labels are very close the photos
can "inherit" labels from others in the sequence.

[Joaquim Jorge] What about using "stories about photos" to create photo archetypes
from those stories and extract content? Another possibility would be sketching
descriptions for content-based retrieval?

[Tom Ormerod] We have a different research agenda. We suspect that good
browsers would do a little of both and minimize labeling problems.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 129-145, 2005.
 IFIP International Federation for Information Processing 2005

“Tell Me a Story”
Issues on the Design of Document Retrieval Systems

Daniel Gonçalves, Joaquim Jorge

Computer Science Department, Instituto Superior Técnico, Av. Rovisco Pais
1049-001 Lisboa Portugal

djvg@gia.ist.utl.pt, jorgej@acm.org

Abstract. Despite the growing numbers and diversity of electronic documents,
the ways in which they are cataloged and retrieved remain largely unchanged.
Storing a document requires classifying it, usually into a hierarchic file system.
Such classification schemes aren’t easy to use, causing undue cognitive loads.
The shortcomings of current approaches are mostly felt when retrieving
documents. Indeed, how a document was classified often provides the main
clue to its whereabouts. However, place is seldom what is most readily
remembered by users. We argue that the use of narratives, whereby users ‘tell
the story’ of a document, not only in terms of previous interactions with the
computer but also relating to a wider “real world” context, will allow for a more
natural and efficient retrieval of documents. In support of this, we describe a
study where 60 stories about documents were collected and analyzed. The most
common narrative elements were identified (time, storage and purpose), and we
gained insights on the elements themselves, discovering several probable
transitions. From those results, we extract important guidelines for the design of
narrative-based document retrieval interfaces. Those guidelines were then
validated with the help of two low-fidelity prototypes designed from
experimental data. This paper presents these guidelines whilst discussing their
relevance to design issues.

1 Introduction

In recent years, computer hardware has become increasingly cheap. As a consequence
people tend to use computers not only at work, but also at home. Furthermore, PCs
are losing their dominance and laptops or PDAs are ever more commonly used in all
settings. Moreover, the advent of ubiquitous, pervasive computing will only increase
the number of devices available from which documents can be handled. Because of
this trend, more and more often users edit and store related documents in different
locations. Thus, new tools that allow users to more easily find a specific piece of
information, regardless of where they are, or to visualize the Personal Document
Space (PDS) as a whole will soon become imperative. One of the major challenges of
HCI in the upcoming years will revolve around these issues, as pervasive computing
becomes a reality 1 2 13.

The biggest problem with current hierarchic organization schemes is that they
continuously require users to classify their documents, both when they are named and

130 D. Gonçalves and J. Jorge

when they are saved somewhere in the file system. Such approaches force users to fit
their documents into specific categories. Also, since users know that a good
classification determines their ability to later retrieve the documents, classifying ever
increasing numbers of documents becomes a painful task, causing undue cognitive
loads while choosing the category in which each document should be placed.

This was first recognized by Thomas Malone 12 on his groundbreaking work
where two main document organization strategies were identified: files and piles. On
files documents are classified according to some criteria, whereas Piles are ad-hoc
collections of documents. The latter were shown to be more common due to the
difficulties inherent to the classification task. Nowadays, similar results are found not
only for documents on computers but also for other applications in which hierarchic
classification has become the primary information organization strategy. Such is the
case of email, where it was found 4 that most users’ inboxes are often filled with large
numbers of messages, given the difficulty and reluctance in classifying them into
other folders. However, despite the apparent lack of classification, the same study
found that the users think it easier to find email messages in the inbox than finding a
document on the file system. This is because email messages are associated to useful
information elements, ranging from the sender of a message to when it was sent and
what messages were received at about the same time. This causes some people to
overload their email tools to work as To Do lists or to maintain sets of unread
documents 14. Even considering that email tools were not designed with those ends in
mind, the trade-off in relation to traditional applications seems to be positive.

This shows the importance of information other than a name or classification for
retrieving documents. Users more readily remember other contextual, real world,
information, rather than some arbitrary classification made months or years ago.
Several works try to make use of such additional information to help users retrieve
their documents. One of the first was Gifford’s Semantic File Systems 7, where
properties are associated to documents, either automatically inferred (from email
headers, for instance), or explicitly created by users. Documents can then be found in
‘virtual-folders’, whose contents are determined by queries on the defined properties.
This work inspired others such as Dourish et al’s Placeless Documents 4 and Baeza-
Yates et al’s PACO 3, where enhancements for features such as support for multiple
document locations and management of shared documents can be found. Other works,
such as Freeman and Gelernter’s Lifestreams 6 recognize the importance of temporal
information, presenting all documents in an ordered stream.

Although alleviating some of the problems users must face, new problems appear
with those approaches. Property-based systems require users to handle (and
remember) arbitrary sets of properties. Furthermore, each property is an isolated piece
of information with no apparent relation to the others. Temporal-based approaches
disregard other kinds of information. An integration of the several relevant
information elements that could help users in finding their documents is lacking. The
most natural way in which users can convey that information to someone is in the
form of stories or narratives. Humans are natural-born storytellers. From early times
have stories been told, first in oral tradition and later in written form. Elements in a
story do not appear separately but as part of a coherent whole. The relations between
those elements make the story easier to remember. An interface that takes advantage
of those abilities and allows users to tell a story describing a document in order to
retrieve it will allow for a more natural and efficient interaction.

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 131

The design of such an interface should take into account not only the most
common and expected elements in a narrative, but also how they inter-relate. This
will allow it to know what shape the stories might have, what will come up next at
any given point in the narrative, and what information users might remember even if
it wasn’t volunteered in the first place, resulting in a dialogue that is natural,
informative and not awkward. Thus, it is important to find out exactly what
document-describing stories are like.

To correctly address the aforementioned challenges, we performed a set of
interviews where several stories describing documents were analyzed. This allowed
us to extract patterns for common narrative elements and ways in which they are used.
Some recurrent story structures were found. From those, we extracted a set of
guidelines that systems for narrative-based document retrieval should follow to
correctly address the users’ needs. Ultimately, we envision the design of a system that
continuously gathers information about the users’ interactions with their documents
and whose narrative-based interface is able to extract vital information about the
documents from the users, allowing the documents to be retrieved.

We’ll start by describing how the study was conducted. Next, we’ll analyze the
results thus obtained. Then we will present the design guidelines, and how they were
validated. Finally, we’ll discuss the main conclusions and possible future work on the
area.

2 Procedure

With this study, we tried to answer two main research questions: (1) in document-
describing stories, what are the most common elements? (2): how do they relate to
form the story? To find the answers, we conducted 20 semi-structured interviews. The
volunteers were interviewed at a time and place of their choice (previously arranged),
often in their own offices or other familiar environments, to set them at ease. We
asked for their consent in recording the interviews.

Of the 20 subjects we interviewed, 55% were male and 45% female, with ages
ranging from 24 to 56. Academic qualifications spanned all levels, from high-school
to PhDs. Their professions were also fairly diversified: Computer Science Engineers,
High-School Teachers, Law Students, economist, social sciences professor, etc. This
accounts for the wide range of computer expertise we found, from programming skills
to sporadic use of common applications (such as Microsoft Word). Overall, we feel
we collected data from a diverse sample that won’t unduly bias the results.

After explaining the study to the subjects, they were asked to remember specific
documents from three different classes and to tell stories describing them. Those
classes were: Recent Documents on which the user worked on in the past few days or
weeks; Old Documents, worked on at least a year ago; and Other Documents, not
created by the user. They were chosen to allow us to evaluate the effect that time
might have on the nature and accuracy of the stories (regardless of their correctness,
since real documents were not available to validate them), and to find if stories are
remembered differently for documents not created by the users themselves, since their
interaction with those documents was different. We didn’t provide actual documents
to be described because that would require the interviewer to have access to the

132 D. Gonçalves and J. Jorge

subject’s computer in order to choose those documents. Previous experiments 8
showed that users are reluctant to allow that kind of intrusion. Also, preliminary test
interviews demonstrated computers to be distractive elements during the interviews,
resulting in stories of poor quality. Furthermore, asking interviewees to remember the
documents to be described better mimics the situations in which they might want to
find a document in everyday life.

For each document, the interviewees were instructed to “tell the story of the
document”, and to recall all information they remembered about it. It was specifically
recommended that information besides the one resulting from the interaction with the
computer itself was important. Additional questions regarding several expected
elements were posed in the course of the interview. They were asked only when the
interviewees seemed at a loss of anything else to say, to see if some other information
could still be elicited from them, or whenever they had started talking about some
unrelated subject and we needed to make them go back to describing the document at
hand. Three test interviews were conducted to tune and validate this procedure

Stories usually took five minutes to be told. Their transcripts averaged two to three
plain text pages, although some users told longer stories. A typical story might start
like this translated excerpt from a real interview:

Interviewer: So, now that you have thought of a document, please tell me its story…
Interviewee: It’s a paper I had sent to my supervisor. We had sent it to a conference

some time ago. It was rejected… meanwhile I had placed the document
on my UNIX account…

3 Interview Analysis

All interviews were subjected to a Contents Analysis 15. We coded for several
elements we expected to find in the stories (Table 1). New elements could be
considered if required during the analysis process. As it turned out, no new elements
were necessary after the initial encoding. Since the users were free to tell their stories
as they chose, we’re fairly confident that we considered all relevant elements.

Table 1. Story Elements.

Time Place Co-Authors Purpose
Author Subject Other Docs. Personal Life
World Events Doc Exchanges Doc Type Tasks
Storage Versions Contents Events
Name

Contents analysis is often performed by defining a coding dictionary which contains,
for each specific word or expression that might occur in the interviews, the class to
which it belongs 11. In our domain such a dictionary could contain an entry stating
that the occurrence of the word “hours” is a reference to a “Time” element. This
approach would allow the encoding to be made automatically. However, it requires
the researcher to anticipate all relevant words or expressions that might appear. This

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 133

was impossible in our experiment since the subjects were free to say whatever they
chose about documents previously unknown to us. Hence, no coding dictionary was
used. Instead, we conducted the coding manually with the help of a set of heuristic
rules that clearly define what should belong to each category, considering not only
specific words or expressions but also their meanings. We coded for frequency rather
than for occurrence, since frequency can give us an estimate of the relative
importance of the elements in terms of the amount of information of each kind in the
stories. Also, we took notice of what elements were spontaneous (proposed by the
interviewees) and induced (promptly remembered by the interviewee after a question
or suggestion from the interviewer). We also considered that not knowing something
is different from knowing something not to have happened. An element was recorded
only in the latter case. For instance, some users remembered that a document had no
co-authors, while others couldn’t remember if that was the case or not.

We also performed a Relational Analysis 15 to estimate how the several elements
relate in the story. We considered the strength of all relationships to be the same. The
direction of the relationships was given by the order in which the elements appear in
the story. The signal of a relationship (whether two concepts reinforce or oppose each
other) wasn’t considered since it isn’t relevant in this case. This allowed us to create a
directed graph whose nodes are story elements, arcs represent the relationships
between those elements, and arc labels contain the number of times the corresponding
transition was found. No transition was considered when the destination element was
induced, since in that case no real connection between the elements existed in the
interviewee’s mind.

4 Results

Overall, we collected and analyzed 60 different stories, 20 for each document type.
We produced not only quantitative results relating to the relative frequencies of the
different story elements and transitions between those elements, but also qualitatively
analyzed the stories’ contents. We took care to compare stories for different document
kinds. Finally, we were able to infer archetypical stories about documents. Several
statistical tests were used whenever relevant. In what follows, all quantitative values
are statistically significant to 95% confidence. More results can be found in the
experiment’s technical report 9.

4.1 Story Length

We found stories to be 15.85 elements long, on average (std. dev.=5.97). The fairly
large standard deviation accounts for the difference between stories relating to
documents created by the user and those of others, with average lengths of 17.7 and
12.15, respectively. From this we conclude it is easier to remember information about
your own documents. There is no significant correlation between story length and
subject age. Although the interviewees were relatively young, this is a surprising
result. Cognitive problems arise with age and some trend could already be visible. As
to gender, we observed that women tend to tell longer stories than men (16.81 vs.

134 D. Gonçalves and J. Jorge

14.67 elements), suggesting it is easier for them to remember potentially relevant
information.

4.2 Transition Numbers

Since no transition is recorded between two elements if the second is induced, the
ratio between the numbers of transitions and story elements provides a good estimate
of how in control of their stories the interviewees were. On average, 47% of stories
were spontaneous, regardless of document type and interviewee gender. A significant
but weak (0.22) correlation was found in relation to age: older users are marginally
more in control of their stories, allowing for less interference from the interviewer.

4.3 Story Elements

The most common overall story elements were Time, Place, Co-Author, Purpose,
Subject, Other Documents, Exchanges, Type, Tasks, Storage and Content (Fig.
1). Some elements appear more than once in a story, showing that users sometimes
provide additional information to reinforce or clarify them. The least mentioned
elements were those pertaining information about Authors, Personal Events, World
Events, Versions, Events, and Names. This shows how those elements are harder to
remember or considered less important by the users.

0

20

40

60

80

100

120

Tim
e

Storage

Purpos
e
Tas

ks

Conte
nts

Docs
.

Sub
jec

t

Co-A
ut.

Typ
e
Exc

h.
Place

Perso
nal

Vers
ion

Autho
r
Nam

e
W

orld
Eve

nts

Fr
eq

ue
nc

y

Spontaneous Induced

Fig. 1 – Overall Element Frequencies.

Fig. 2 shows that element frequencies for Recent and Old Documents seem to follow
similar distributions. Statistically, we found significant differences only for the
Subject element. When a document is recent, users tend to reiterate it on their
narratives, since they easily remember more relevant details.

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 135

0
5

10
15
20

25
30

35
40

Ti
m

e

Pu
rp

os
e

Ta
sk

s

St
or

ag
e

C
o-

Au
t.

Su
bj

ec
t

Pl
ac

e

Ty
pe

C
on

te
nt

s

Ex
ch

.

D
oc

s.

Ve
rs

io
n

Pe
rs

on
al

W
or

ld

N
am

e

Au
th

or

Ev
en

ts

Fr
eq

ue
nc

y

Recent Old Other
Fig. 2 – Element Frequencies by Document Kind.

Larger differences could be found among documents created by the user and those of
others. The most noteworthy differences are related to the frequencies of Place, Co-
Authors, Purpose, Author, and Version. The differences in Author and Version are
easy to explain: when the user itself is the author of a document, he will take the fact
for granted, and it is hard if not impossible for a person to know if a document
someone else wrote had different versions. Co-Authors are also harder to remember.
Only the author, if anything, is remembered. As to the Place where the document was
handled, reading a document is less prone to memorable interactions than actively
writing it, making it harder to remember where it happened. Finally, and regarding the
document’s Purpose, the reason for the difference seems once again to be the ease in
which it is possible to remember what a document was for when we were its author.

We found little difference in the amount of times an element was induced, given its
total number of occurrences, for the different document types. The only significant
differences occurred between documents created by the users and those of others, for
Place, Co-Author and Version, as was to be expected from the different element
frequencies we described above.

0

10

20

30

40

50

60

Docs
.

Tim
e

Plac
e

Exc
h.

Co-A
ut

Stor.
Task

s
Subj.

Vers
.

Typ
e

Cont.
Pers.

Purp.
Auth.

Worl
d

Name

Eve
nts

%

Fig. 3 – Overall Percentages of Induced Elements.

Overall (Fig. 3), we found that the less often induced elements are Purpose, Author,
Personal Events, World Events, Events and Name. With the exception of Purpose,
these are the least frequent element categories. Keeping in mind that induced elements

136 D. Gonçalves and J. Jorge

are those subjects remembered after a question, the fact that these elements were
rarely mentioned and, when they were, they appeared spontaneously, means that
either they are so important they are remembered without need for external aid, or no
amount of suggestion can make the users remember them. Purpose’s case is different.
It is an element that is seldom induced but that appears fairly often in the narratives.
This shows it to be something users consider important and easy to remember.

The more often induced elements are Time, Place, Co-Author, Other
Documents, Exchanges, Tasks and Storage. All of these appear fairly often in
stories, at least once, on average. They are important elements, but hard to remember:
mentioned often but only after something triggered the subject’s memories about
them. Even so, no element is, on average, induced more than 50% of its occurrences
in the stories, showing that, even if it is hard to remember, there is a fair chance it
might come up spontaneously after all.

The Nature of Story Elements
A closer look at the elements themselves allowed us to find exactly what form the
phrases where they are described actually takes.

The level of accuracy for references to Time tends to vary. For Recent Documents
it is fairly specific: “(…) about one hour and a half ago (…)”. For Old Documents it
is only roughly remembered: “(…)I delivered it around April (…)”. In stories about
Other Documents, the references to Time vary in accuracy, depending solely on how
long ago the document was handled. References to Place, on the other hand, are very
accurate (“At home”; “It was updated here”), as are those about the document’s
Purpose, which include information on where and for what the document was used:
“(…) it will be used in the school’s newspaper (…)”.

References to Co-Authors are seldom actual names. Often, the subjects only
remember if they existed or not. The mentioned Subjects were of very diverse
natures: “(…) the subscription to a magazine (…)”; “(…) the weekly results of my
work”; “(…) an analysis of the company’s communications infrastructure”.

The Other Documents that were mentioned sometimes included actual paper
documents, and not electronic ones. It was common for users to mention the existence
of other documents without actually specifying what documents they were talking
about (but apparently knowing it themselves). Finally, sometimes the reference to
another document was enough to cause a ‘short story’ about that document to be told.
Information about the document Exchanges usually described email exchanges, but
also other forms, such as posting it on a web site. References to a document’s Type,
included not only the mention of specific formats (“text”, “image”), but also to
applications commonly used to handle documents of a given kind (“Word”, “Excel”,
“PowerPoint”).

We found references to computer-related and ‘real world’ Tasks: “(…) went to the
library to find some references (…)”; “(…) downloaded and selected the photos.”;
“(…) I printed the document (…)”. References to where the document was Stored
often mention entire computers, but also removable media and specific (unnamed)
locations in a hard drive or local networks. In the case of online documents, the site is
often mentioned.

As to Content, it was common to find mentions to specific information about the
document’s structure. References to specific contents were rare: “It had a sentence

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 137

that started by ‘And to those persons that…’ ”; “(…) it was divided into tables (…) It
had lots of graphics (…)”.

It is not always possible to remember a document’s Author, especially for foreign,
hard to pronounce names. Personal Events usually happened to the interviewees
themselves or to someone directly related to them. Often it is something that could be
found on someone’s agenda, but not always: “It was the day my car’s battery went
dead.”; “(…) I finished it before my vacations.”; “(…) my son had a serious asthma
crisis (…)”.

Almost completely absent were references to World Events, often not directly
associated to the users but directly relating to their jobs or co-workers. Only once was
some important news event mentioned. Also rare were references to Versions,
normally to state that they didn’t exist. The least mentioned story element, Events
that might have occurred when the subject was interacting with the document, often
described actions done by the users and unrelated to the documents, rather than events
outside their control. It seems that such incidents are unimportant and quickly
forgotten: “(…) I prepared instant soups (…)”; “Someone arrived at my home (…)”.
Finally, there were some references to Names, either of the document files
themselves or of folders where those files are stored. Sometimes, no specific names
were uttered, but it was clear the user had a specific, well identified, folder in mind.

Ti
m

e
Pl

ac
e

C
o-

Au
t

Pu
rp

.
Au

th
.

Su
bj

.
D

oc
s.

Pe
rs

.
W

or
ld

Ex
ch

.
Ty

pe
Ta

sk
s

St
or

.
Ve

rs
.

C
on

t.
Ev

en
ts

N
am

e

Time
Place
Co-Aut.
Purpose
Author
Subject
Docs.
Personal
World
Exch.
Type
Tasks
Storage
Version
Contents
Events
Name

14-15
13-14
12-13
11-12
10-11
9-10
8-9
7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

Fig. 4 – Transition Frequencies

Element Transitions
Only 36.7% of all possible transitions occurred more than once, reinforcing our
assumption that there are indeed especially relevant transitions underlying the stories.
The most common transitions were Time-Purpose, Tasks-Content, Subject-Time,
Type-Purpose, and Storage-Type (Fig. 4). Reflexive transitions such as those
involving Content, Place, and Time, are also common, whenever the user feels the
need to refine or clarify something.

138 D. Gonçalves and J. Jorge

A situation could arise in which a transition between two frequently-occurring
elements would itself have a high absolute frequency while happening (for instance)
only 50% of the times those elements were present in a story. This could make it seem
more important that a transition that occurs 100% of times among rarer elements.
Normalized transition frequency values accounting for the frequencies of the involved
elements were calculated and no significant bias was detected.

We calculated, for each story element, the probabilities that another of a particular
kind might follow. For the most common transitions (for the others, the data is not
trustworthy), we found the most probable to be Place-Place (0.417), Content-
Content (0.344), Tasks-Content (0.316), and Time-Purpose (0.25). Also with a
fairly high transition probability we found Co-Author-Co-Author (0.259), Author-
Co-Author (0.25), Author-Subject (0.25), and Place-Storage (0.25). These
probabilities are enough to build some expectations but not to have any certainties.

Finally, we found little symmetry in the transitions. For instance, the Time-Purpose
transition occurs over three times as often as Purpose-Time.

5 Discussion

The thorough description of document-describing stories we obtained provides
important insights on what the designer of interfaces that make use to those stories
should consider. We collected those insights in the form of guidelines we will now
describe.

5.1 Customization

We found little relevance of personal factors such as gender and age to the way stories
are told. The only exceptions were that women tend to tell longer stories than man,
and that older persons are marginally more in control of their stories than younger
ones. Apart from those aspects, the stories remain the same. Hence, little user
customization will be necessary in relation to what to expect from a story. This does
not preclude other customizations, such as adapting the interface to the particular
subjects users usually work on, or to better visualize a particular Personal Document
Space.

5.2 Memory

We expected to find that a user’s memory about a document would fade with time,
allowing them to remember less information. However, except for Subject (more
common for Recent documents), no significant time-related difference was found for
the remaining elements, story length, or transition numbers. Likewise, no differences
were recorded in the percentages of induced elements stories: nearly half of the
narratives were spontaneously told by the subjects. Differences in information
correctness might exist, but were not addressed by this study.

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 139

What does seem to affect the information a user can remember about documents is
their origin. Stories about documents created by the user, regardless of when, are
longer. Some elements such as Place or Purpose are mentioned more often,
suggesting they are easier to remember. In short, some differences in the story
structures and accuracy can be expected according to the age of the document being
described. However, the biggest differences derive from the document’s origin. It is
important to determine it early in the narrative, to correctly form expectations about
what can be found ahead in the story.

5.3 The Importance of Dialogues

For some story elements, a significant number of occurrences were induced by
questions posed by the interviewer. Elements such as Time, Place, and Other
Documents are among them. They are also some of the most frequent elements,
suggesting that users consider them important and can actually remember them, if
asked.

It is important to establish dialogues with users in order to obtain all information
they can actually remember. Some care should be taken about thematic shifts.
However, they are fairly rare and should pose no significant problem.

On the other hand, the dialogues should not waste time and resources trying to
discover certain elements, such as Author, Personal Events, World Events, Events and
Names. They are rarely mentioned but generally spontaneously, showing that if they
are remembered at all, they will most likely be volunteered with no need for
inducement.

5.4 Context-Dependent Information

It is common for stories to include indirect references to elements that are taken for
granted by the storyteller. For instance, references to the Place where a document was
produced and its Author are based on assumptions or contextual information. Often,
no specific places or names are mentioned because they seem obvious to the person
telling the story. This happens, for instance, if a document arrived by email and the
user only has email access at work. It is important to take the context in which the
story is told into consideration, comparing it to a model of the users’ world and of
users themselves.

5.5 Ambiguity

Some level of ambiguity is common in stories. For instance, references to time
become more inaccurate for older documents. Something similar occurs when trying
to remember names of authors or co-authors. The user can remember what the name
sounded like, or that it had some co-authors, but not their actual names.

Some level of ambiguity must be tolerated by narrative-based interfaces.
Techniques to automatically disambiguate stories with the help of context and user
and world models are to be considered. Users themselves often try to help, providing

140 D. Gonçalves and J. Jorge

information about the same element more than once in the same story. That
willingness to help should be encouraged and used.

5.6 World and User Models

When referring to such elements as Purpose, World Events or Personal Events, a wide
range of information can be conveyed. It is probably impossible to just use keywords
extracted from the stories to effectively gain some insight on what document is being
talked about. Trying to understand those elements just by looking at what was said is
also insufficient, due to great numbers of things that would be important to
understand them but are taken for granted and not explicitly mentioned. To aid in that
understanding, a model of the world around the users and of the users themselves
(including typical activities, co-workers, etc.) should be used. Important information
can also be found on the user’s agenda, and also in that of his friends or co-workers.
Some facts from the ‘wider world’, such as important news could also helpful, albeit
rarely.

5.7 Overall Document Structure

Users remember more easily overall document structures than actual keywords or
phrases in that document. Some technique that identifies the overall structure or visual
appearance of a document and can use that information to differentiate among several
documents would be useful.

5.8 Events Arising During Interactions with the Document

In short, these are not relevant. It was extremely rare for any such events (someone
entering the office, a phone call, etc) to be remembered.

5.9 Recursive Stories

When describing related documents, it is common for several information elements
pertaining those documents to be told. They can constitute small recursive stories
(stories within a story). Special care should be taken to capture those elements, which
provide important information, while keeping in mind they relate to a document
different than the one the story is about. Also, those stories should somehow be
controlled in order to prevent the storyteller from loosing himself in them,
sidetracking from the document he really wants to find.

5.10 Expected Elements and Structure

The stories we analyzed share, up to a point, similar structures. Designers of
narrative-based interfaces should take advantage of those similarities. They will allow

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 141

the system to know what to expect from the stories, help guide the user towards
providing useful information, and collect that information.

Some story elements are more frequent than others, and should be expected more
often. Several will be mentioned only if prompted by some external factor. This
information is useful, helping decide if some more information should be expected (if
some frequent elements weren’t yet mentioned) or not. It will help decide whether it’s
worthy to invest some time and effort to discover more elements.

5.11 Probable Transitions

Of all possible transitions between different story elements, only 37% have some
credible probability of showing up. Of those, five are to be expected fairly often.
Combining this information with the probabilities of what will be the next element,
given the current point in the narrative, it will be possible to build expectations of
what the next element in the story will be. This will help recognize it and extract all
relevant information, facilitating disambiguation.

6 Validating the Guidelines

The guidelines we just described are based solely on stories told to human
interviewers. To validate them, it is necessary to verify if stories told to computers, no
longer free-form but in a more structured environment, are similar to those in which
the guidelines were based. We designed two low-fidelity prototypes that embody the
guidelines. In both, time plays a special role, as does determining the documents’
authors, allowing the use of the different expected story structures. Several story
elements are suggested to the users in the order found to be the most likely in the
previous study, but any of them can be referred to at any time, if the users so wish.
Specialized dialogue boxes are used to enter the elements. Prototype A allows the
direct manipulation of the elements, graphically represented on the interface as little
boxes, and Prototype B presents those elements as natural language sentences (Fig. 5
and Fig. 6). More details on the prototypes’ design can be found in the experiment’s
technical report 10. Ten users where asked to tell document-describing stories using
Prototype A, and ten others using Prototype B. We used a Wizard-of-Oz
methodology, in which the researcher simulates the workings of the prototypes.

Comparing the stories told using the prototypes to those previously collected
immediately showed them to be similar. The relative frequencies and importance of
the several story elements is analogous to those found for stories told to humans, as is
the nature of the information. The stories were actually longer than those told to
humans (20%), thus conveying more information. Prototype B was clearly better,
allowing for longer stories to be told, with fewer differences to the ones in the
previous study. For instance, in only 3% of stories did the users of that prototype
deviate from the proposed story order, whereas this happened on 43% of the stories
told using Prototype A. Also, the qualitative evaluation of the prototypes (using a
questionnaire), showed that the users found Prototype A to be more confusing. We
attribute the differences between the two prototypes to the fact that on Prototype B,

142 D. Gonçalves and J. Jorge

the users were able to see the entire story as a whole, in textual form, and Prototype A
dispels the illusion of telling a story by dividing the narratives into discrete elements.

This shows that, despite the validity of the guidelines (using them, we were able to
come up with an interface that allows stories similar to those told to humans to be
told), the judicious design of the interface is crucial for the quality of the stories.

7 Conclusions and Future Work

With the growing numbers of documents users must deal with on a daily basis, new
techniques to help finding them are imperative. One such technique involves taking
advantage of our innate ability to tell stories. We verified that stories about documents
provide a wealth of information about them, helping the users to remember more
details than they would otherwise, as shown by the existence of induced elements. We
found that dialogues are important to allow those elements to come up. The stories
shared several common properties and structure, including the most common
elements. This will allow for narrative-based interfaces to build expectations on what
shapes the stories might take, helping to understand and disambiguate them. In short,
several important guidelines could be extracted that will allow future research in the
area to be developed on a sound basis. Those guidelines were validated with the help
of low-fidelity prototypes.

One factor we didn’t take into account in this study and that might constitute
interesting future research is to ascertain to what extent the information users tell in
their stories is accurate. In the present study, when someone said that a document was
written four months ago, we had no way of verifying that assertion. Such verifications
would require access to the users’ documents. However, such extended access leads
to important privacy concerns that will have to be dealt with. This would be
something better tested by resorting to a story-gathering prototype which is able to
gather story details and verify their accuracy without the intervention of a human
interviewer.

Fig. 5. Prototype A.

Fig. 6. Prototype B

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 143

References

1. Abowd, G. Software Engineering Issues for Ubiquitous Computing. Proceedings of the
21st international conference on Software engineering, pp 75-84, ACM Press, 1999.

2. Abowd, G. and Mynatt, E. Charting Past, Present, and Future Research in Ubiquitous
Computing. ACM Transactions on Computer-Human Interaction, 7(1), pp 29-58, ACM
Press 2000.

3. Baeza-Yates, R., Jones, T. and Rawlins, G. A New Data Model: Persistent Attribute-
Centric Objects, Technical Report, University of Chile, 1996

4. Bälter, O., Sidner, C.. Bifrost inbox organizer: giving users control over the inbox. In
Proceedings of the second Nordic conference on Human-computer interaction, pages 111-
118, ACM Press, 2002.

5. Dourish, P. et al. Extending Document Management Systems with User-Specific Active
Properties. ACM Transactions on Information Systems, 18(2), pp 140-170, ACM Press
2000.

6. Freeman, E. and Gelernter, D. Lifestreams: A Storage Model for Personal Data, ACM
SIGMOD Record,25(1), pp 80-86, ACM Press 1996.

7. Gifford, D., Jouvelot, P., Sheldon, M. and O’Toole, J. Semantic File Systems. 13th ACM
Symposium on Principles of Programming Languages, October 1991.

8. Gonçalves, D. and Jorge, J. An Empirical Study of Personal Document Spaces. In
Proceedings DSV-IS 2003, Lecture Notes on Computer Science, Springer-Verlag, vol.
2844, pp. 47-60, June 2003, Funchal, Portugal.

9. Gonçalves, D. Telling Stories About Documents, Technical Report, Instituto Superior
Técnico, 2003 (http://narrative.shorturl.com/files/telling_stories.zip).

10. Gonçalves, D. 'Telling Stories to Computers'. Technical Report, Instituto Superior
Técnico, December 2003.
http://narrative.shorturl.com/files/telling_stories_to_computers.zip.

11. Huberman, M. and Miles, M. Analyse des données qualitatives. Recueil de nouvelles
méthodes. Bruxelles, De Boeck, 1991.

12. Malone, T. How do People Organize their Desks? Implications for the Design of Office
Information Systems, ACM Transactions on Office Information Systems, 1(1), pp 99-112,
ACM Press 1983.

13. Myers, B, Hudson, S and Pausch, R.. Past, present, and future of user interface software
tools. ACM Transactions on Computer-Human Interaction, 7(1), pp 453-469, ACM Press
2000.

14. Whittaker, S., Sidner, C. Email overload exploring personal information management of
email. In Conference proceedings on Human factors in computing systems, pages 276-283,
ACM Press, 1996.

15. Yin. R. Case Study. Design and Methods. London, Sage Publications, 1989.

144 D. Gonçalves and J. Jorge

Discussion

[Tom Ormerod] Both approaches share an interaction mode that is fun and engaging
(although they impose a task load on users). The engagement aspects of the system
will possibly prove to be important. When do you want to capture that information?
You said you do it a while ago, instead of when saving a document (as in MS Word).
Is the delay between document production and narrative elicitation important?

[Joaquim Jorge] It is intentional. One of our main tenets is to save people
from needing to classify "too much" when working. The experiment was
devised by asking people to classify instead of snooping their personal
information on their personal file systems.

[Greg Phillips] When I'm searching for a document I'm highly motivated to tell my
story. But using the story to search requires the presence of meta-data. As Tim Bray
says: "there is no cheap meta-data". Where does your meta-data come from?

[Joaquim Jorge] To collect the meta-data, we're assuming something like
factoids (Digital Western Research Lab 1997), which automatically does it.
In the near term, we want to use people's personal calendar, agendas, e-mail
folders. We assume users will have these data in their computer and willing
to share it if they can trust the system. It does raise some privacy issues as
noted in our presentation.
The purpose of this research is to find out how best to get people to tell
stories, and to find out what kinds of stories they tell. In our case study, we
have just evaluated what kind of interface would be good to capture such
information.

[Bonnie John] About practice and research: Apple says next OSX will have full-text
search of all documents, encoded when saved, so instantaneous retrieval -- are
companies overtaking research?

[Joaquim Jorge] This particular technique can be used on non-textual files,
so Apple's technique will not solve all search problems.
Some documents contain only non textual information (eg pictures). Full-text
searches will not work on unlabeled images and movies. The proposed
Views can ease search problems. But stories can be used for unlabeled
content and use autobiographical information, to complement those
conventional techniques.

[Michael Harrison] The narratives you have shown seem to be more autobiographical
than about the documents that were stored (based on the content). Was this true?

[Joaquim Jorge] That was one of the surprising outcomes of our experiment.

[Hong-Mei Chen] How do you do the encoding of meta data?
[Joaquim Jorge] We have to do the encoding using personal data granered
from personal information.

[Hong-Mei Chen] How do you motivate people to do the encoding when first filing
the document as it will take a long time to tell the story?

“Tell Me a Story” – Issues on the Design of Document Retrieval Systems 145

[Joaquim Jorge] People found it easier to tell the story in a structured
environment than telling it to a real human. Our research results showed that
people are satisfied with telling the story.

[Hong-Mei Chen] Do you have problems justifying the statistical power and sample
size, 20, to elicit the 17 story elements you used as guidelines in your design?

[Joaquim Jorge] We didn’t have a problem with the statistical significance
but the sample size is a problem. It takes a lot of effort to do the interviews.
20 was the minimum acceptable sample.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 146-163, 2005.
 IFIP International Federation for Information Processing 2005

CanonSketch: A User-Centered Tool for Canonical
Abstract Prototyping

Pedro F. Campos and Nuno J. Nunes

Department of Mathematics and Engineering, University of Madeira
Campus da Penteada, 9000-390 Funchal, Portugal

{pcampos,njn}@uma.pt

Abstract. In this paper, we argue that current user interface modeling tools are
developed using a formalism-centric approach that does not support the needs
of modern software development. In order to solve this problem we need both
usable and expressive notations and tools that enable the creation of user-
interface specifications that leverage the design and thought process. In this
paper we present the CanonSketch tool. CanonSketch supports a new UI
specification language – Canonical Abstract Prototypes (CAP) – that bridges
the gap between envisioned user behavior and the concrete user interface. The
tool also supports two additional and synchronized views of the UI: the
Wisdom UML presentation extension and concrete HTML user interfaces. In
this way the tool seamlessly supports designers while switching from high level
abstract views of the UI and low-level concrete realizations.

1 Introduction

Model-based user interface design (MB-UID) has been the target of much research
during the last decade. However, and despite the success obtained by user interface
development tools, approaches based on models are not reaching the industrial
maturity augured in the 90's [4].

In a paper presented at a recent Workshop on MB-UID [9], we argued that in order
to achieve a stronger market acceptance of modeling tools, a new generation of user-
centric tools would have to emerge. The existing tools are focused on the formalisms
required to automatically generate the concrete user-interfaces. This legacy of
formalism-centric approaches prevents the current tools from adequately supporting
the thought and design tasks that developers have to accomplish in order to create
usable and effective user-interfaces. Model based approaches concentrate on high-
level specifications of the user-interface, thus designers loose control over the lower
level details. These problems with MB-UI tools are described in [4]. In particular,
those tools suffered from trying to solve the “whole problem” and thus providing a
“high threshold/low ceiling” result. The threshold is related to the difficulty of
learning a new system and the ceiling is related with how much can be done using the
system. Thus, those tools don’t concentrate on a specific part of the UI design process
and are difficult to learn, while not providing significant results.

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 147

In order to overcome these limitations, designers directly use a user-interface
builder (a low threshold/low ceiling tool) that provides them with adequate and
flexible support for designing the user-interface. Designers that recognize the value of
modeling at higher levels of abstraction are forced to use different tools and notations
to capture the user-interface specifics at different levels of abstraction – what could be
considered as using many low-threshold/low ceiling tools.

Some of the requirements for such tools were also discussed in a recent workshop
about usability of model-based tools [11]. Among other issues, the participants at the
workshop highlighted the following requirements as paramount to promote usability
in tools: traceability (switching back and forth between models, knowing which parts
can be affected by changes), support for partial designs, knowledge management (for
instance, a class that is selected or modified often is probably more important than
classes not often changed) and smooth progression from abstract to concrete models.

In this paper we present a new tool, under development, that tries to leverage the
users' previous experience with popular Interface Builder (IB) tools in order to
achieve better adoption levels. Our aim is to build a developer-centric modeling tool
that applies successful concepts from the most usable and accepted software tools.
Instead of defining a complex semantic model and formalisms to automatically
generate the user interface (UI), we start by using a simple sketch application and
extending it to accommodate the required concepts and tools. The tool supports the
creation and editing of Canonical Abstract Prototypes [2] and Wisdom Presentation
Models [7]. It is capable of automatically generating HTML interfaces from the
Canonical specification. In this initial phase, we are focusing on specifying GUI’s for
Web-based applications, although conceptually the tool is not restricted to this type of
interface, since the languages are platform and implementation independent.
However, this allows us to test the main concepts of the tool/language by focusing on
a well-known interface type.

This paper is organized as follows: Section 2 relates our work to some approaches
for UI design and Section 3 briefly describes the main notation our tool supports:
Canonical Abstract Prototypes. Section 4 presents CanonSketch, detailing some of its
user-centered features. Section 5 proposes an initial extension to the Wisdom
presentation model in order to support the Canonical notation. Section 6 investigates
the capability of both notations to express UI design patterns in an abstract way.
Finally, Section 7 draws some conclusions on our present work and presents possible
future paths to follow.

2 Prototyping and Sketching Interfaces

Rapid prototyping of interactive systems is a technique used in order to assess design
ideas at an early stage of the development process. It attempts to foster the
collaboration between all the stakeholders involved in the project (managers, end-
users, graphic designers, coders...) and to facilitate iterative cycles of reviewing and
testing.

Being a de facto standard in the development community, the UML provides a
good medium to specify UIs enabling higher acceptance rates and promoting artifact
interchange between modeling tools. UML class stereotypes have become a very

148 P.F. Campos and N.J. Nunes

popular alternative to structure the presentation elements of interactive systems [7]. In
particular, the Wisdom notation complies with the UML standard, thus enhances
communication with software developers. Another strategy, used by the DiaMODL
approach, combines this with a strong linkage to concrete UI elements [10]. Other
approaches are used in different areas: Hypermedia applications, such as in [13] and
[14] and Cooperative System modeling [15].

Prototyping interfaces with electronic sketching tools has also proven successful in
systems such as SILK [3] or DENIM [5]. Sketching is believed to be important during
the early stages of prototyping, because it helps the designers' creative process: the
ambiguity of sketches with uncertain types or sizes encourages the exploration of new
designs without getting lost in the details, thus forcing designers to focus on important
issues at this stage, such as the overall structure and flow of the interaction [3].

However, widget recognition is hard for these systems [3], since any widget
recognition algorithm might be too error-prone. Also, usability tests reported that
some users had trouble manipulating and entering text, and understanding how to
select, group and move objects.

Calgary et al. [16] describe a framework that serves as a reference for classifying
user interfaces supporting multiple targets, or multiple contexts of use in the field of
context-aware computing. This framework structures the development life cycle into
four levels of abstraction: task and concepts, abstract user interface, concrete user
interface and final user interface [16]. These levels are structured with a relationship
of reification going from an abstract level to a concrete one and a relationship of
abstraction going from a concrete level to an abstract one. As we will see in this
paper, maintaining a connection between these levels is well supported in
CanonSketch.

Canonical Abstract Prototypes [2] were developed by Constantine and colleagues,
after a growing awareness among designers regarding the conceptual gap between
task models and realistic prototypes. They provide a common vocabulary for
expressing visual and interaction designs without concern for details of behavior and
appearance. Moreover, they fill an important gap between existing higher-level
techniques, such as UML-based interaction spaces and lower-level techniques, such
as concrete prototypes. This is why we chose this notation as our starting point for our
modeling tool. In the following section, we briefly describe the Canonical notation.

3 Canonical Abstract Prototypes

Constantine [2] proposes a stable collection of abstract components, each specifying
an interactive function, such as inputting data or displaying a notification. Following
on the successful path of interface builders, these components can be selected from a
palette in order to build abstract prototypes, thus fostering flexibility and modeling
usability. Having a standardized set of abstract components also eases the comparison
of alternative designs and enhances communication between members of the
development team [2].

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 149

The symbolic notation underlying Canonical Abstract Prototypes is built from two
generic, extensible1 universal symbols or glyphs: a generic material or container,
represented by a square box and a generic tool or action, represented by an arrow.
Materials represent content, information, data or other UI objects manipulated or
presented to the user during the course of a task. Tools represent operators,
mechanisms or controls that can be used to manipulate or transform materials [2]. By
combining these two classes of components, one can generate a third class of generic
components, called a hybrid or active material, which represents any component with
characteristics of both composing elements, such as a text entry box (a UI element
presenting information that can also be edited or entered). Figure 1 shows the three
basic symbols of the Canonical Abstract notation. For a more detailed look of the
notation, please refer to Figure 6.

Fig. 1. The three basic symbols underlying the symbolic notation of Canonical Abstract
Prototypes (from left to right): a generic abstract tool, a generic abstract material and a generic
abstract hybrid, or active material (taken from [2]).

Although Canonical Abstract Prototypes lack a precise formalism and semantics
required to provide tool support and automatic generation of UI, we found the
notation expressive enough to generate concrete user interfaces from abstract
prototypes. In the following section, we present our tool, including a proof of
feasibility in which we generate HTML pages from sketches of Canonical Abstract
Prototypes.

4 CanonSketch: The Tool

Different tools (business presentation applications and even sticky notes or
whiteboards) can be used for creating Canonical Abstract Prototypes. However, in
order to assess and benefit from all of the advantages of this notation, software tool
support is ultimately needed [2].

CanonSketch aims at providing a usable and practical tool to support Canonical
Abstract Prototypes. Starting with an easy to learn notation, developed from real
world projects, we built a tool that provides the user a palette of abstract components
that can be drawn, grouped, resized and labeled within a drawing space representing
an interaction space. The tool supports all the successful features one expects to find
in software nowadays, like multiple undo/redo, grid layout, tool tips or send to
back/bring to front.

Our tool already supports the creation (at the syntactic level only) of Wisdom
interaction spaces [6]. Our aim is to leverage developer experience of the Unified
Modeling Language (UML) by designing an extension to the UML that fully supports
Canonical Abstract Prototypes. Figure 2 shows a CanonSketch screenshot of the
Wisdom view, where the designer is creating a Wisdom presentation model as if she

1 Meaning all other components can be derived, or specialized, from these classes.

150 P.F. Campos and N.J. Nunes

were sketching in a simple drawing application. Figure 3 shows a screenshot of the
Canonical view: we can see that there are several palettes of tools available (e.g. for
controlling font-size, coloring and grid layout) and an inspector as well as an optional
ruler.

Fig. 2. CanonSketch screenshot: creating Wisdom UML presentation models.

In our path to building a usable modeling tool for UI design, we began with a
different approach from the conventional way these tools are envisioned: instead of
focusing on the formalisms and semantics, we began with a simple drawing
application and built a modeling tool that relies on interaction idioms more closely
related to Office applications, as we discuss in the following sections. Our remit here
is that we intend to focus on achieving a modeling tool that is as easy to use as a
drawing application.

4.1 User-Centered Features

UI tools represent an important segment of the tool market, accounting for 100
million US Dollars per-year [4]. However, there has been a gross decline on the
modeling tools market revenue, according to reliable sources such as the International
Data Corporation. The lack of usability present in modeling tools is believed to be
responsible for this weak adoption [11].

A more developer-centered approach was followed in CanonSketch: Figure 4
shows some of the aspects we took into account. Canonical Abstract Prototypes are
organized in terms of sequences of interaction spaces that appear as thumbnails of
their corresponding specifications. By using this pattern, very common on business
presentation applications, we aim at leveraging the existing user experience while also
promoting communication and collaboration between developers and clients (who are
often businessmen familiar with this pattern).

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 151

Fig. 3. CanonSketch screenshot: creating and editing Canonical Abstract Prototypes.

…

Fig. 4. Some of the developer-centered features in CanonSketch.

The center image on Figure 4 shows a selection of several canonical components to
apply a transformation of their interactive function all at once. The rightmost image
shows code completion for when the designer is specifying a Wisdom Interaction
Space (which is a UML class stereotype representing ”space” where the user can
interact with the application). We believe this way of editing UML models is more
usable than filling in complex forms that only update the UML view after validating
everything the developer introduced.

Finally, the grid layout option may help position and resizing the components more
rapidly, and the tool palettes follow the pattern of the successful Interface Builders.
Tabbed-view navigation is important in order to achieve, in the future, model linkage
at the various stages of the process.

152 P.F. Campos and N.J. Nunes

4.2 A Proof of Feasibility: Generating HTML Forms

There is a third view in CanonSketch where a concrete prototype, in HTML form, is
automatically generated, thus illustrating one possible concrete implementation. The
concrete prototype is fully navigational, since it is rendered using an embedded, fully
functional web browser, as we can see in Figure 5.

In order to verify the richness of the notation developed by Constantine and
colleagues, and also to support automatic generation techniques, still without a
semantic model defined, we built a proof of feasibility that can be exemplified in
Figure 5. The HTML form shown was automatically generated from the canonical
specification illustrated in Figure 3.

The HTML clickable prototype is useful for rapidly testing the navigational
structure of the specified interface. The tool can also generate a PDF printable version
of the Canonical/Wisdom models, which can act as a means to document the
development process and commit to design decisions made with the client.

Fig. 5. Simple HTML automatically generated from the specification in Figure 2.

In the absence of a semantic model incorporated into our tool, this proof of concept
already shows the potential of the notation, and achieves our goal of checking the
richness of the abstract prototype notation. This is also part of our approach based on
starting from a usable, simple tool and successfully add semantic mechanisms in an
incremental way, rather than building a complex, formalism-centered tool.

5 Towards a Common Semantic Model

The automatic generation presented in the previous section was done at this stage
without complete semantics of our intended adaptation of Canonical Abstract
Prototypes. We are currently working on incrementally adding the mechanisms
required to automatically generate concrete user interfaces from abstract prototypes.

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 153

From this initial proof of concept, we aim at specifying an extension to the UML
2.0 notation capable of fully supporting Canonical Abstract Prototypes. In particular,
the Wisdom notation [7], which is a set of UML-compatible notations supporting
efficient and effective interactive systems modeling, can be used and refined to
achieve this goal.

In order to maintain synchronized Wisdom/Canonical views, a common semantic
model is required. Specifying such a model will lead to a tool capable of not only
supporting the design process at several stages (from early design ideas to concrete
implementation) but also complementing the weaknesses of one model with the
strengths of the other. The designer will be able to choose between one model view
and switch back and forth while maintaining coherence between the models.

To support the modeling of presentation aspects of the UI, the Wisdom method
proposes the following extensions to the UML [8]:

- «Interaction Space», a class stereotype that represents the space within the UI
where the user interacts with the all the tools and containers during the course of a
task or set of interrelated tasks;
- «navigate», an association stereotype between two interaction space classes
denoting a user moving from one interaction space to another;
- «contains», an association stereotype between two interaction space classes
denoting that the source class (container) contains the target class (contained); The
contains association can only be used between interaction space classes and is
unidirectional.
- «input element», an attribute stereotype denoting information received from the
user, i.e., information the user can operate on;
- «output element», an attribute stereotype denoting information displayed to the
user, i.e., information the user can perceive but not manipulate;
- «action», an operation stereotype denoting something the user can do in the
concrete UI that causes a significant change in the internal state of the system.

Some problems identified with applying the Wisdom approach to UI patterns

derive from the presentation aspects some of the patterns capture, such as size,
position, or use of color [8]. Specifying a linkage between Canonical Abstract
Prototypes and the Wisdom Presentation Model can help solve some of these
problems, while also adding the necessary formalism to the Canonical notation.

In Figure 6, we show an initial specification of a possible connection between the
Wisdom Presentation Model and Canonical Abstract Prototypes. An interaction space
in Wisdom is clearly an interaction context in a Canonical Prototype.

Although not present in Figure 6, the «navigate» association can be unidirectional
or bi-directional; the later usually meaning there is an implied return in the
navigation. This essentially has the same meaning Constantine defines when
describing the Canonical contexts’ navigation map [1].

An «input element» attribute stereotype is mapped to a generic active material,
unless typified. Input elements specify information the user can manipulate in order to
achieve a task.

An «output element» attribute stereotype maps to an element and an «action»
operation stereotype to an action/operation Canonical component.

The «contains» association stereotype is mapped to a Canonical container.

154 P.F. Campos and N.J. Nunes

Fig. 6. Extending the Wisdom profile to support Canonical Abstract Prototypes: this figure
shows the correspondence between Wisdom stereotypes and Canonical components.

We can also see from Figure 6 that one possible initial extension to the Wisdom
presentation model notation to fully support Canonical Abstract Prototypes consists in
adding two more attribute stereotypes:

- «input collection», an attribute stereotype denoting a set of related information
elements received from the user, i.e., a set of input elements; an «input collection»
can be used to select from several values in a drop-down list, or choosing one
element from a table to perform any given operation;
- «output collection», an attribute stereotype denoting a set of related information
elements displayed to the user, i.e., a set of output elements. Typically, an «output
collection» conveys information to the user about a set of elements of the same
kind, for instance a search results list or the results display from a query to a
database.

By typifying these attribute stereotypes, one can map a Wisdom presentation

model to all Canonical components that belong to the classes of Materials or Hybrids.
For instance, an input collection typified as choice can be mapped to a selectable
collection. The designer starts by specifying the general structure of the UI using a
UML extension (the Wisdom notation). That specification is mapped to one or more

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 155

Canonical interaction contexts, where the designer expands and details the model in
terms of size, position and interactive functions.

Figure 7 shows an example of a Wisdom Presentation Model for a Hotel
Reservation System (described in and taken from [7]). Figure 8 depicts a Canonical
Abstract Prototype that corresponds to the area inside the dashed rectangle in Figure
7. This mapping clearly shows the role of Wisdom interaction spaces realizing the
interface architecture, and how it can be combined with the Canonical notation to help
bridge the gap between abstract and concrete models of the user interface.

The capability of identifying UI patterns and expressing the solution in an abstract
way independent of any particular platform or implementation is becoming more and
more important, with the increase in the number of information appliances [8]. The
Wisdom notation enables an abstract definition of UI patterns [8], and also complies
with the UML standard. However, some problems remain for patterns expressing
more concrete presentation aspects, such as size or positioning.

Having a tool that provides a common semantic model linking Canonical
components to Wisdom elements can help solve some of these problems. It also adds
the required formalisms for generating concrete user interfaces from Canonical
specifications. We expect to incrementally build such a tool from our current version
of CanonSketch.

As we will see in the next section, both notations can be used in conjunction in
order to express abstract design patterns.

Fig. 7. A Wisdom Presentation Model for a Hotel Reservation System (described in and taken
from [7]).

156 P.F. Campos and N.J. Nunes

Fig. 8. A Canonical Abstract Prototype for the same Hotel Reservation System as in the area
inside the dashed rectangle in Figure 7.

6 Using CanonSketch to Represent UI Patterns

Since the Canonical Abstract Notation is a way to express visual design ideas that was
devised to support decision-making at a higher level of abstraction than concrete
prototypes, we tried to investigate the ability to express GUI design patterns using
CanonSketch. In this section, we present some examples of the Wisdom notation
extension applied to some GUI patterns (taken from the Amsterdam collection [12])
and also the Canonical representation for the same patterns. As Constantine points
out, “the ability to express design patterns in terms of generalized abstract models has
seen little use in UI patterns”. We still lack some widely accepted notation to
represent commonly used solutions to some interaction tasks in an abstract way that
can be applied to many design scenarios [8].

Throughout this section, all the Figures illustrate a Final User Interface (FUI)
linked to a Concrete User Interface (CUI) or Abstract User Interface (CUI), in the
terms defined in [16]. The FUI is represented by a screenshot of a particular
implementation of the pattern, and the AUI is represented by the Canonical and
Wisdom representations.

In Figure 9, we present the Wisdom and Canonical representations for the GUI
Preview pattern [12]. We also present a concrete realization of this pattern (a dialog
from MS PowerPoint). The problem this pattern tries to solve occurs when the user is
looking for an item in a small set and tries to find the item by browsing the set. This
pattern is particularly helpful when the items’ content nature does not match its index
(e.g. a set of images or audio files are indexed by a textual label). The solution is to
provide the user with a preview of the currently selected item from the set being
browsed [12]. As we can see, there is not much difference in this case. On the one
hand, the Wisdom representation (on the top left), is much more compact, because it
is based on the UML. But the Canonical representation has the advantage of clearly
stating that the browsable list of items is placed to the left of the item preview, which

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 157

conforms with the western way of reading and therefore adjusts to the task being
performed: the user first selects an item, and only then he focuses on the preview. It is
also evident that the Canonical notation is much closer to the concrete representation
of this pattern (at the bottom of Figure 9).

Fig. 9. A Wisdom (top left) model, a Canonical prototype (top right), both applied to the
Preview Pattern. A concrete example is shown at the bottom: a dialog from MS PowerPoint.

In the following pattern, the advantages of combining both Wisdom and Canonical
representations are also evident. The grid layout pattern, also from the Amsterdam
collection [12], tries to solve the problem of quickly understanding information and
take action depending on that information. The solution is based on arranging all
objects in a grid using a minimal number of rows and columns, making the cells as
large as possible [12]. The bottom of Figure 10 shows an example of a concrete GUI
where this is achieved (a dialog box from Word 97). By using this pattern, screen
clutter is minimal and the layout is more consistent. The top of Figure 10 shows the
Wisdom representation at the left and the Canonical representation on the right.

It is clear that the Canonical notation has potential for easily expressing patterns
that employ spatial, layout or positioning relationships between UI elements. Both
notations have mechanisms for adding useful comments and constraints. The
repetition element in the Canonical notation (represented by a triple chevron) is
expressed as a one-to-many «contains» association in Wisdom.

158 P.F. Campos and N.J. Nunes

Fig. 10. The grid layout pattern: a Canonical (top left) and Wisdom (top right) representation
and a concrete GUI application (bottom).

Figure 11 shows a UI pattern where one can see the advantage of Wisdom over
CAP. The “Wizard” pattern solves the problem of a user that wants to achieve a
single goal, but needs to make several decisions before the goal can be achieved
completely, which may not be know to the user [12]. Figure 11 shows an instantiation
of this pattern through a Wisdom model (top left) that has two interaction spaces:
Wizard body and Wizard step. Multiple steps are denoted by the 1..* cardinality in the
<<contains>> association stereotype. Abstract actions (denoted by the <<action>>
operation stereotype) are associated with each interaction space denoting typical
actions performed in a Wizard pattern (for instance next, back, cancel and finish) [8].

This example illustrates an advantage of Wisdom over CAP regarding the
modeling of navigation relationships between the abstract interface elements. In CAP,
it is not possible to model a container that allows navigation to other instances of
itself (like the Wizard step in this example). Modeling a containment relationship
(like a Wizard body that contains successive interaction Wizard steps) is also difficult,
unless an informal annotation or comments are used.

Finally, we show yet another abstract design pattern, the Container Navigation
pattern [17]. When the user needs to find an item in a collection of containers, this
pattern splits a window into three panes: one for viewing a collection of containers,
one for viewing a container and one for viewing individual items. Figure 12 shows a
Wisdom UML model, the Canonical prototype and a concrete GUI example of this
pattern (Netscape’s mail/news viewer).

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 159

Fig. 11. The “Wizard” pattern. The top left part of the figure shows the Wisdom UML
representation, which shows the navigation between “Wizard steps”. The top right shows the
Canonical representation and at the bottom a particular realization: the Add Printer Wizard in
Windows 2000.

Fig. 12. The container navigation pattern: a Wisdom (top left) model, a Canonical prototype
(top right) and a concrete GUI application (bottom), in this case Netscape’s news reader.

160 P.F. Campos and N.J. Nunes

In order to adequately express this UI pattern, size and relative positioning do matter.
They support the user’s task because the user first selects a container, then selects the
item in the container and finally browses through the selected item. The information
that the collection of containers occupies the left part of the screen, and that the item
view is at the bottom right can only be conveyed through the Canonical notation.

To conclude, we observe that the Wisdom notation has some advantages over
CAP, mainly due to its’ compactness and the fact that is based on a language (UML)
well understood and adopted by the majority of developers and designers. For
expressing navigation patterns that involve several interaction spaces, such as the
Wizard pattern [8], the Wisdom notation is more expressive and intuitive. Patterns
dealing with spatial layout and size aspects are more clearly represented using CAP.
The designer’s mind works at several levels of abstraction, thus there is a need for
languages and tools supporting those multiple levels of abstraction, while also
maintaining a low learning curve.

When trying to express and compare the abstract design patterns presented in this
section, we found CanonSketch to be a very useful and practical tool, because it
supports two different notations that employ different levels of abstraction and also
because it can easily be used to compile a collection of design patterns, thus
simplifying the design’s comparison and communication.

7 Conclusions and Future Work

To offer software engineers a usable, efficient and effective set of tools and methods
is an important step towards building valuable, easy to use software. The same
concepts that apply to the production of usable software also apply to the production
of modeling tools. Our remit with CanonSketch is to achieve a modeling tool for MB-
UID that is as easy to use as a drawing application. In this paper we presented the
CanonSketch tool that supports the design of Canonical Abstract Prototypes as well as
Wisdom Presentation Models. The CanonSketch project described here attempts to
change the way modeling tools are built and envisioned. Existing tools are built using
a formalism-centric approach, driven by the underlying semantics required by
automatic generation techniques and not by the real needs of developers. Instead of
focusing on the mechanisms required for automatic generation techniques, we focus
on the successful features of usable software and on interaction idioms more closely
related to Office-like applications.

One of the limitations of our approach is the fact that there is not a simple and
clearly defined process of using the Canonical notation to specify interfaces for
multiple devices. Although CanonSketch can clearly allow multi-platform
development (Win, Mac, Palm, Web…) multimodal interfaces are not supported by
this tool.

Nevertheless, even in the absence of model semantics, a tool like CanonSketch has
significant value in specifying the architecture of complex interactive systems. Being
able to generate HTML also means the notation is expressive enough to support
automatic generation techniques and that it is possible to generate UI’s for any
platform based on GUI’s and Forms like JavaSwing, Palm, Windows or MacOS.
After this initial proof of feasibility, we presented a first specification for a UML

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 161

extension based on the Wisdom notation that is a step towards a full support of
Canonical Prototypes in a language that had a major impact on Software Engineering
but still remains far from achieving the industrial maturity augured in the 90’s,
regarding UI modeling. We also showed how useful the tool can be in expressing UI
patterns, and compared Wisdom UML representations of some patterns to the
Canonical representations using the proposed correspondence between the two
notations. We showed that patterns dealing with spatial or layout aspects could be
adequately expressed in a Canonical representation, while Wisdom UML is better at
modeling navigation relationships. We are currently finishing the integration of the
semantic model of the UML into the tool. This will allow, among other possibilities,
to export the abstract UI specification in XMI format, thus promoting artifact
exchange between UML-based tools.

As for future work, it would be interesting to identify which notation designers
prefer according to the development stage and the type of prototype they are busy
with (low, mid or high fidelity). We also expect to refine the Wisdom notation taking
advantage of the enhanced extensibility mechanism provided by UML 2.0, and add
other features such as knowledge management (capturing hidden information, like the
most edited classes or interaction contexts, etc.), support for changing requirements
and integration with application development in order to bridge the gap between
industry and academy.

References

1. Constantine, L. and Lockwood, L. A. D.: Software for use : a practical guide to the models
and methods of usage-centered design, Addison Wesley, Reading, Mass, 1999.

2. Constantine, L.: Canonical Abstract Prototypes for abstract visual and interaction design. In:
Jorge, J., Nunes, N. and Falcão e Cunha, J. (eds.): Proceedings of DSV-IS’2003, 10th
International Conference on Design, Specification and Verification of Interactive Systems.
Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin Heidelberg New
York, 2003.

3. Landay, J. and Myers, B.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer, pages 56-64, March 2001.

4. Myers, B., Hudson, S. and Pausch, R.: Past, Present and Future of User Interface Software
Tools. ACM Transactions on Computer Human Interaction, 7(1):3-28, March 2000.

5. Newman, M., Lin, J., Hong, J. I. and Landay, J. A.: DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer Interaction, 18(3):259-324,
2003.

6. Nunes, N. J.: Wisdom - A UML based architecture for interactive systems. In Proceedings of
the DSV-IS’2000, Limerick, Ireland. Springer-Verlag.

7. Nunes, N. J.: Object Modeling for User-Centered Development and User Interface Design:
the Wisdom Approach. PhD Thesis, University of Madeira, Funchal, Portugal, April 2001.

8. Nunes, N. J.: Representing User-Interface Patterns in UML. In Proceedings of OOIS'03 - 9th
European Conference on Object-Oriented Information Systems, pages 142-163, Geneva,
Switzerland, 2003.

9. Nunes, N. J. and Campos, P.: Towards Usable Analysis, Design and Modeling Tools. In
Proceedings of the IUI/CADUI'04 Workshop on Making model-based UI design practical:
usable and open methods and tools, Funchal, Portugal, January 2004.

162 P.F. Campos and N.J. Nunes

10. Trætteberg, H. Dialog modelling with interactors and UML Statecharts - A hybrid
approach. In Proceedings of DSV-IS'2003, 10th International Workshop on Design,
Specification and Verification of Interactive Systems. Springer-Verlag, 2003.

11. Trætteberg, H., Molina, P. J. and Nunes, N. J. (eds.): Proceedings of the IUI/CADUI'04
Workshop on Making model-based user interface design practical: usable and open
methods and tools, Funchal, Portugal, 2004.

12. M. van Welie and Trætteberg, H.: Interaction Patterns in User Interface. In PLoP 2000.
2000.

13. Koch, N. and Wirsing, M.: Software Engineering for Adaptive Hypermedia Systems. In
Paul de Bra, editor, Third Workshop on Adaptive Hypertext and Hypermedia, 8th
International Conference on User Modelling, July 2001.

14. Schwabe, D. and Rossi, G.: An Object-Oriented Approach to Web-Based Application
Design, Theory and Practice of Object Systems 4 (4), 1998. Wiley & Sons, New York.

15. Garrido, J. L. and Gea, M.: A Coloured Petri Net Formalisation for a UML-Based Notation
Applied to Cooperative System Modelling. In Proceedings of DSV-IS'2003, 10th
International Workshop on Design, Specification and Verification of Interactive Systems.
Springer-Verlag, 2003.

16. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, Vol. 15, No. 3, June 2003, pp. 289-308.

17. Nilsson, E. Combining compound conceptual user interface components with modeling
patterns: a promising direction for model-based cross-platform user interface development.
In Proceedings of DSV-IS'2003, 10th International Workshop on Design, Specification and
Verification of Interactive Systems. Springer-Verlag, 2002.

Discussion

[Morten Harning] How does your approach cope with the Wizard pattern with respect
to enabling/diabling availability of "next" and "previous" buttons, e.g. showing that
"previous" should not be part of the first step and "next" should not be part of the last?

[Pedro Campos] We can not show that kind of information in a formal way,
but we can add informal notes as used in the previous examples where a note
describes that the preview is synchronized with the selected item.

[Morton Harning] Does that not mean that <<navigates>> is just a high-level note?

[Pedro Campos] Yes, there is no free lunch!

[Greg Phillips] In Constantine`s method, the development of Canonical Abstract
Prototypes is typically done in parallel with context maps. Does your tool support
context maps?

[Pedro Campos] Yes, in the sense that the Wisdom "navigates" relation
represents navigation. This is shown in the prototype side by separate slides.

[Greg Phillips] A component then; maybe part of an answer to Morten's question is
that the wizard pattern isn't a single interaction context, as you've shown, but rather a
collection of related concepts. My other question is that in showing the
correspondence between Wisdom and C.A.P. you only shared a single "action" type
where Constantine provides a rich set of actions.

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 163

[Pedro Campos] Yes, that's on purpose. We find that in UML/Wisdom it
only makes sense to show general "actions". Then, when the user moves to
the C.A.P. view they specialize the actions into selection, cancellation, or
whatever. This is part of the general theme of moving from abstract to
concrete.

[Michael Harrison] How are you evaluating the tool?

[Pedro Campos] Currently informal but there is a plan to evaluate in more
detail.

[Bonnie John] Are you using your tool to design your tool?

[Pedro Campos] Yes to some extent - I used it to design the tool's website.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 164-178, 2005.
 IFIP International Federation for Information Processing 2005

Finding Iteration Patterns in Dynamic Web Page
Authoring

José A. Macías and Pablo Castells

E.P.S. Universidad Autónoma de Madrid
Ctra. de Colmenar, km. 15
28049 – Madrid – Spain
+ 34 91 497 22{41, 84}

{j.macias, pablo.castells}@uam.es
http://www.ii.uam.es/~{jamacias, castells}

Abstract. Most of the current WWW is made up of dynamic pages. The
development of dynamic pages is a difficult and costly endeavour, out-of-reach
for most users, experts, and content producers. We have developed a set of
techniques to support the edition of dynamic web pages in a WYSIWYG
environment. In this paper we focus on specific techniques for inferring
changes to page generation procedures from users actions on examples of the
pages generated by these procedures. More specifically, we propose techniques
for detecting iteration patterns in users’ behavior in web page editing tasks
involving page structures like lists, tables and other iterative HTML constructs.
Such patterns are used in our authoring tool, DESK, where a specialized
assistant, DESK-A, detects iteration patterns and generates, using Programming
by Example, a programmatic representation of the user’s actions. Iteration
patterns help obtain a more detailed characterization of users’ intent, based on
user monitoring techniques, that is put in relation to application knowledge
automatically extracted by our system from HTML pages. DESK-A relieves
end-users from having to learn programming and specification languages for
editing dynamic-generated web pages.

1 Introduction

Since its emergence in the early 90’s, the WWW has become not only an information
system of unprecedented size, but a universal platform for the deployment of services
and applications, to which more and more activity and businesses have been shifting
for more than a decade. The user interfaces of web applications are supported by a
combination of server-side and client-side technologies, such as CGIs, servlets,
JSP/ASP, XML/XSLT, JavaScript, Flash, or Java applets, to name a few. For most
applications, client-side GUI facilities are not enough or, as in the case of applets,
have unsolved portability problems. Architectural characteristics of web systems
typically bring about an inherent need for not only creating web pages that contain
interactive interface components, but for generating the pages dynamically on servers
or intermediate web nodes. Moreover, using as simple client-side technologies (i.e.
client-side requirements) as possible is usually the preferred approach for businesses

Finding Iteration Patterns in Dynamic Web Page Authoring 165

for which reaching the widest audience possible is a critical concern. As a matter of
fact, dynamic pages make up the vast majority of the current web ([23] gave an
estimate of 80% in year 2000).

With dynamic web pages, user interfaces can be generated whose contents,
structure, and layout are made up on the fly depending on application data or state,
user input, user characteristics, and any contextual condition that the system is able to
represent. However the development of dynamic pages is a quite complex task that
requires advanced programming skills. The proliferation of tools and technologies
like the ones mentioned above require advanced technical knowledge that domain
experts, content producers, graphic designers or even average programmers usually
lack. Development environments have been provided for these technologies that help
manage projects and provide code browsing and debugging facilities, but one still has
to edit and understand the code. As a consequence, web applications are expensive to
develop and often have poor quality, which is currently an important hurdle for the
development of the web.

The research we present here is an effort to leverage these problems by
developing Programming By Example (PBE) techniques [5, 9, 16] to allow regular
users, with minimum technical skills, to edit dynamic web pages. Our work can be
situated in the End-User Development (EUD) area [19], concerned with enabling a
non-expert user to deal with a software artifact in order to modify it easily. Many
WYSIWYG tools are available today for the construction of static HTML pages, but
is it not clear how procedural constructs, like the ones needed for creating dynamic
web pages, can be defined within the WYSIWYG principle. Our proposal consists of
letting the user edit the product of the page generation procedures, i.e. one or more
examples of the type of dynamic pages that will be generated at runtime, and build a
system that is able to generalize the actions of the user on the examples, and modify
the page generation procedure accordingly.

We have worked our proposal through the development of a purely WYSIWYG
authoring tool, DESK [10, 11, 12], which supports the customization of page
generation procedures in an editing environment that looks like an HTML editor from
the author point of view. With DESK, users edit dynamic pages produced by an
automatic page generation system; DESK keeps track of all user’s actions on edited
documents, finds a semantic meaning to the editing actions, and carries the changes to
the page generation system. A differential aspect of our approach with respect to
previous PBE techniques is the explicit use of an application-domain model, based on
ontologies, to help characterise the user’s actions in relation to system objects and
interface components. Semantic relationships between application objects underlying
HTML constructs are used by DESK to trace back the inverse path from generated
pages up to the generation procedure.

In this paper we focus on the inference mechanisms by which DESK infers the
user’s intent, by means of data models and characterizations of user actions. A
particularly interesting and complex problem to make sense of the user’s actions is
when the user manipulates complex layout structures made of tables, lists, trees, or
combinations thereof. The need for these layout primitives is unavoidable in any but
most trivial HTML pages and, when it comes to dynamic pages, they are often used in
correspondence to application information structures. A specialized assistant, DESK-
A, attempts to find out iteration patterns in the user behavior when s/he handles these
structures, in order to infer the user’s intent and provide with assistance in addressing

166 J.A. Macías and P. Castells

complex high-level tasks. An iteration pattern involves –and provides a means to
correlate– a layout structure, application information structures, and a likely structure
in user’s actions. How to correctly identify and find the relation between these three
parts of the equation is a problem addressed by the work presented here.

This paper is organized as follows: Section 2 describes how our system deals with
iteration patterns as well as the metrology used for extracting and classifying different
types of patterns. Additionally, an specific case of use will be presented and deployed
throughout the paper in order to show how DESK-A works and finds out iteration
patterns from user actions. Section 3 describes related work on EUD and PBE
systems that mostly exploit user monitoring techniques. Finally, in Section 4, some
conclusion will be provided.

2 Iteration Patterns

Iteration patterns can be though of as a generalization of common user actions that
can appear more than once, so that they can be used to apply similar behavior on
future interaction. Iteration patterns help be able for the system to suggest the user to
achieve cumbersome tasks on her behalf.

Fig. 1. Our approach. The end-user interacts with the system that extracts information from her
actions. A domain model is in turn used to create a detailed history of user actions enriched
with semantics from the domain model. Finally DESK processes all this information to detect
high-level tasks on the monitoring model, in order to provide the end-user with assistance at the
interaction.

Finding Iteration Patterns in Dynamic Web Page Authoring 167

In order to address iteration patterns, our approach needs the system to record the
user’s actions by building a specialized monitoring model. The monitoring model can
be regarded as a built-in low-level task model, where all the actions the user achieves
on the web interface are stored and enriched with add-on implicit information about
the interface itself. This way, one of the advantages in using a monitoring model is
that a semantic history of user actions can be built in real time. Therefore in our
approach the system analyses and manages such history to find iteration patterns.

Fig. 1 shows how the system tracks the user’s actions and then uses domain
information to generate a semantic history. Such history is in turn added on with
references of the interface’s components as well as with internal annotations. The
system also detects and models presentation structures like tables and selection lists.
An inference engine (i.e. DESK-A) processes the history of user actions and detects
iteration patterns than can be applied to assist the user. Finally the system provides the
end-user with help and performs task as a user’s surrogate.

2.1 Detecting Iteration Patterns

Detecting iteration patterns consists of analyzing the history of user actions (i.e. the
monitoring model) to find out meaningful information about the user’s high level
tasks. To carry out this challenge, the system implements a set of heuristics for
finding relationships between the user’s actions and the interface’s presentation
elements (i.e. widgets) than are being manipulating by the end-user in the interaction.

The system detects linear relationships between the geometry features of the
widgets and, basically, divides interaction patterns into two different categories:
regular pattern and non-regular patterns.

Regular patterns are meant to be iteration sequences on certain widget attributes
that define linear relationships between the widget’s features (such as table columns
and rows, selection list items and so on), whereas non-regular patterns are meant to be
iteration sequences without regular relationships (i.e. no linear relationships can be
found out) between widget attributes, and they have to be tackled apart.

Regular Patterns
Regular patterns are detected and processed by means of specialized heuristics called
Iteration Patterns Algorithms (hereafter IP Algorithms). IP Algorithms are a set of
algorithms specialized in studying widgets geometry and extracting specific
properties about them. Such properties will help find suitable iteration masks for
copying elements automatically from one widget into another, holding the same
domain model properties and mappings.

Fig. 2 shows two snapshots of DESK environment where a transformation of
widgets takes place. This example will be used throughout the paper to put into
context the algorithms for dealing with iteration patterns. That figure depicts how the
user is attempting to copy elements from a selection list into a table previously
created. After a couple of intents, DESK asks the user for confirmation to transform
the selection list into a table, and finally the tool accomplishes the transformation.
Therefore, it results in removing the list and replacing it by a table which has the same
number of items and internal domain model mappings.

168 J.A. Macías and P. Castells

Fig. 2. Two snapshots from DESK. The scenario depicts an automatic transformation from a
selection list into a table. The system detects the user’s intent while s/he copies elements from a
selection list into a table (left window), so the system suggests her (central message box) to
convert the whole list into a table automatically (right window after the end-user has accepted
the suggestion)

There are several IP Algorithms that can are applied depending on the type of the
widget the system deals with. A sample code of one of these algorithms (inspired in
Fig. 2) for managing transformation of tables and selection lists is as follows:

IP_Algorithm (Widget W1, W2, Set TG) {
 ColumnSequence = A.getColumnSequence(W2);
 RowSequence = A.getRowSequence(W2);
 ElemIndexSequence = A.getElementIndexSequence(W1);
 ColJumpSet = ColSequence.getColJumpSet();
 RowJumpSet = RowSequence.getRowJumpSet();
 ColShiftSet = BuildColShiftSet(ColumnSequence,
 ColJumpSet,RowJumpSet);
 RowShiftSet = BuildRowShiftSet(RowSequence,
 ColJumpSet,RowJumpSet);
 Iterator = BuildIterator(W2.getBounds(),
 TG, ColShiftSet, RowShiftSet,
 ElemIndexSequence);

 ...
 While (Iterator.hasNext()) {
 i = Iterator.getNexti(i);
 j = Iterator.getNextj(j);
 k = Iterator.getNextk(k);
 W2.setElementAt(i,j,W1.getElementAt(k));
 }
}

W1 represents the source widget (i.e. a selection list) and W2 is the destination one

(i.e. a table). TG contains information about the widget’s properties (i.e. number of
fixed columns and rows). A is a set that stores information about actions that concern
the process of copying elements from one widget into another. This set is very useful

Finding Iteration Patterns in Dynamic Web Page Authoring 169

in order to obtain common properties about the widget’s manipulation sequence (for
example, the column insertion sequence of elements into a table), as well as to obtain
an abstract model about the widgets are being manipulated by the user throughout the
interaction. Properties stored in A can be accessed by means of specialized methods:

– A.getSize(Widget)
– A.getElementIndexSequence (Widget)
– A.getColumnSequence(Widget)
– A.getRowSequence (Widget)
– A.getElementAt(Widget,i[,j])
– A.getID(Widget)
– A.getClassName(Widget)
– A.getObjectName(Widget)
– A.getExistsRelation(Widget1,Widget2)

The main goal of above operators is to provide the inference engine with

information about the widget (and its properties), such as the size of a given widget,
the insertion sequence of elements (index, column and row), the class and the object’s
names as they appear in the domain model, and the existing relationships between the
source widget and the destination one. Therefore it is be able for the engine to build-
in an iteration mask (Iterator) which provides with a mechanism for copying
automatically elements from the source widget to the destination one, and adapting
the properties of the destination widgets as the original one appears in the underlying
models of the interface.

Fig. 3 depicts an example (based on Fig. 2) as the result of executing the above
algorithm for copying elements from the selection list into the table. As shown in this
figure, ColumnSequence and RowSequence sets store the insertion sequence
achieved at each user step on the table. On the other hand, ElemIndexSequence
stores the followed-up sequence of item selection on the selection list. Furthermore,
the IP Algorithm calculates the column (ColJumpSet) and the row (RowJumpSet)
jump’s sets by processing A. The algorithm also detects whether the insertion is
carrying out either on rows or columns by comparing both jump sets. This way, if
RowJumpSet is greater (in size) than ColJumpSet, the insertion is achieved by
iterating the rows, if not the insertion is achieved by iterating the columns. Otherwise,
if both sets have the same size, special considerations has to be taken since there is a
straight linear relationship between row and column on the insertion sequence. Next
an increment mask is calculated for columns (ColShiftSet) and rows
(RowShiftSet) by using an operator, namely Average defined in equation (1).

,0
1

1,0

1,
1

)(...)()(
),...,,,(

112312

321 n
xx

n

n
n

xxxxxx
xxxx

nnn

nAverage (1)

170 J.A. Macías and P. Castells

RowSequence = {1,1,1,3,3,3} ColumnSequence = {2,4,6,2,4,6}
RowJumpSet = {4} {=> Row-Based Insertion} ColJumpSet = {2,3,4,5,6}
ElementIndexSequence = {1,2,3,4,5,6} Average (ElementIndexSequence,1,6) = 1

Average (RowSequence,1,2) = Average {1,1} = 0 Average (ColunmSequence,1,2) = Average {2,4} = 2

Average (RowSequence,2,3) = Average {1,1} = 0 Average (ColunmSequence,2,3) = Average {4,6} = 2

Average (RowSequence,3,4) = Average {1,3} = 2 Average (ColunmSequence,4,5) = Average {2,4} = 2
Average (RowSequence,4,5) = Average {3,3} = 0 Average (ColunmSequence,5,6) = Average {4,6} = 2

Average (RowSequence,5,6) = Average {3,3} = 0

RowShiftSet = {(Row:1),0,0,2,0,0} ColShiftSet = {(Col:2),2,2,#,2,2}

X5 X6

X1 X2

X4

X3

TableSelection List
1

....
2 3 4 5 6 N...

1

2

3

...

M

Fig. 3. Execution of an IP Algorithm for a table and a selection list. Before transforming the
selection list intro a table, the system generates specific sets that store information concerning
the rows and columns involved as well as the jump sequence’s sets. Finally, a couple of
iteration masks are calculated for both column and row, those intended to create an automatic
iteration process for carrying out the transformation among widgets

Equation (1) represents an operator that calculates the average sequence of

jumps. The operator is applied to obtain a couple of masks (ColShiftSet and
RowShiftSet sets) which include the increments used in the loop for column and
row jumps. Initial positions are also considered at loop starting (Col:2 and Row:1),
resulting in this case as follows: increasing 2 columns for the first time, jumping then
two more rows (# in RowShifSet and 2 in ColShiftSet), next jumping 2
columns, and finally repeating the sequence all over again.

All these sets are finally used to create the iteration index to iterate though the
widgets and to easily complete the iteration sequence previously calculated.

Fig. 4 shows examples of similar transformation processes, where different cases
of tables with different types of insertion sequences are depicted. Those result in
different values for each set depending on widget geometry. As shown, the algorithm
can face correctly a great deal of cases where cut-in columns and rows are detected as
a part of the iteration mask, using & symbol for row-based jumps and # one for
colum-based jumps. Fig. 4 also shows a case where the iteration pattern is defined as
an identity function (i.e. the same number of row jumps than column ones), finely
detected by DESK-A as well.

Non-regular Patterns
Unfortunately it is not always able to create an iteration pattern that best fits a
sequence started by the user. Actually, when the system is not able to find out linear
relationships in iterative sequences on widget geometry then had-hoc or specific-
purpose iteration patterns have to be considered.

Finding Iteration Patterns in Dynamic Web Page Authoring 171

ColunmSequence = {1,3,5,1,2,3,4,5,6,1,3,5}
RowSequence = {1,1,1,2,2,2,2,2,2,3,3,3}

ColJumpSet = {2,3,4,5,6,7,8,9,10,11,12}
RowJumpSet = {4,10} => Row-Based Insertion

ColShiftSet = {(Col:1),2,2,#,1,1,1,1,1,#,2,2}
RowShiftSet = {(Row:1),0,0,1,0,0,0,0,0,1,0,0}

X1 X3
X4 X6 X8 X9

X11 X12

....

X2

X10

X5 X7

 X8

X1
X2
X3
X4

X5
X6
X7

ColunmSequence = {1,1,1,1,3,3,3,3}
RowSequence = {1,2,3,4,1,2,3,4}

ColJumpSet = {5} => Column-Based Insertion
RowJumpSet = {2,3,4,5,6,7,8}

ColShiftSet = {(Col:1),0,0,0,2,0,0,0}
RowShiftSet = {(Row:1),1,1,1,&,1,1,1}

X1 X2 X3 X4 X5
X6 X7 X8 X9 X10

....

ColunmSequence = {1,2,4,5,6,1,2,4,5,6}
RowSequence = {1,1,1,1,1,2,2,2,2,2}

ColJumpSet = {2,3,4,5,6,7,8,9,10}
RowJumpSet = {6} => Row-Based Insertion

ColShiftSet = {(Col:1),1,2,1,1,#,1,2,1,1}
RowShiftSet = {(Row:1),0,0,0,0,1,0,0,0,0}

....

X1
X2

X3

ColunmSequence = {1,2,3}
RowSequence = {1,2,3}

ColJumpSet = {2,3} => Row-Based Insertion
RowJumpSet = {2,3} => Column-Based Insertion

ColShiftSet = {(Col:1),1,#} = {1}
RowShiftSet = {(Row:1),1,&} = {1}

Fig. 4. Some examples of iteration patterns. These examples are generated using IP Algorithms,
as it depicted in Fig. 3. So that Figure shows the iteration patterns for copying elements to the
table as well as the sets generated for achieving the final transformation among the selection list
and the table.

The system faces the challenge of non-regular patterns by allowing the user to
create a pool of pre-defined iteration patterns. Therefore s/he can customize the
design and tell the system how to resolve the iteration in order to accomplish the
transformation successfully. The pool of non-regular patterns can be included in the
engine configuration, specifying the behavior for how the assistant (i.e. DESK-A) has
to deal with each type of widget.

Fig. 5 shows an example of two iteration patterns that can be defined in the non-
regular part of the DESK-A configuration file (see Section 2.2). This example reflects
non-regular patterns where linear relationships are hard to find out, since there is not a
straight relationship among the widget’s attributes (i.e. column and row insertion
sequences), so that IP Algorithms cannot be applied directly.

2.2 DESK-A

DESK-A (DESK-Agent) is a specialized inference assistant for finding out high level
tasks (i.e. changes) related to the user’s actions. DESK-A is based on the idea of
the Information Agent [1] focused on wrappers paradigm [8, 16]. By contrast, in our

172 J.A. Macías and P. Castells

X1
X2 X3

X4

....

X1 X2 X3
X4 X5 X6

....

Fig. 5. Two examples of non-regular iteration patterns detected while copying elements from a
selection list into a table. Here the relationship between rows and columns is not easy to find
out since non linear sequences make IP Algorithms unlikely to deal with those cases. Anyway,
those kinds of patterns are not usual to find in mostly common practice, so that a customized
pool of predefined patterns is enough in order for the system to tackle non-regular patterns.

approach the agent searches the monitoring model, which has an explicit semantic
representation of the user’s actions, rather than searching the HTML code directly.
Therefore it is able for DESK-A to activate more complex heuristics [13] in order to
find out transformation of presentation widgets, such as transforming a combo box
into a table or transforming a table into a selection list. DESK-A can also infer more
complex intents such as sorting a selection list and copying attributes from one table
cell into another [13].

DESK-Agent detects and manages both regular and non-regular patterns by
monitoring the user input. Basically, DESK-Agent comprises three main states:
– pre-activation: where the agent checks up the monitoring model for detecting high

level tasks. This depends on the configuration set.
– activation: where the agent searches for specific widget values on the monitoring

model once is pre-activated. Here, DESK-A analyzes in-depth the history of user
actions and makes up different models for each widget involved in the interaction.

– execution: where the agent executes the transformations taking into account the
values found at the activation step.
DESK-Agent searches the monitoring model for primitives that better fit the

requirements defined at its configuration. The agent can be set-up by defining a
configuration file at client-side. That configuration reflects the agent’s behavior:

<TransformationHint>
 ...
 <widget type="List" changeTo="Table">
 <Condition action="Creation"
 widget="Table" />
 <Condition action=”PasteFragment"
 from="Table" to="List" />
 <Non_Regular_Pattern_Pool>
 <Pattern col_sequence=“1,1,2,2”
 row_sequence=“1,2,2,3”
 elem_sequence=“1,2,3,4”>
 <Resolve i=“from 1 to List.getSize(); i++1”
 next_col_sequence=“col[i],col[i]”
 next_row_sequence=“row[i],row[i+1]”
 next_elm_sequence=“elm[i]” />
 </Pattern>

Finding Iteration Patterns in Dynamic Web Page Authoring 173

 <Pattern col_sequence=“1,2,3,2,3,4”
 row_sequence=“1,1,1,2,2,2”
 elm_sequence=“1,2,3,4,5,6”>
 <Resolve
 next_col_sequence=“3,4,5,4,5,6,...”
 next_row_sequence=“3,3,3,4,4,4,...”
 next_elm_sequence=“7,8,9,10,11,...” />
 </Pattern>

 ...
 </Non_Regular_Pattern_Pool>
 </widget>
 ...
</TransformationHint>

The above code is a fragment of the DESK-A configuration, where
<TransformationHint> elements are pre-activation directives the agent will
check for arranging transformations between both widgets (<widget>), in that case
a selection list (type="List") and a table (changeTo="Table"). Furthermore,
DESK-A checks the creation status (action="Creation") of the table, as
reflected in <Condition> elements, and analyses the copy sequence of elements
(action=”PasteFragment") from the table into the selection list, making up
dependences between the two widgets.

When all these prerequisites are satisfied, the agent executes transformation
heuristics for detecting iteration patterns (see IP Algorithms at regular patterns
Section) by selecting meaningful information from the monitoring model. Finally, the
process results in transforming the widgets and keeping the same structure that holds
the source widget by firstly asking the user for confirmation.

DESK-Agent also deals with non-regular patterns by allowing the user to create a
pool of pre-defined iteration pattern (<Pattern> element inside
<Non_Regular_Pattern_Pool>, at agent configuration code). This way
DESK-A completes and resolves (<Resolve> element) the iteration sequence in
order to accomplish the transformation successfully. Non-regular patterns are
represented by using an indexed-construction, defining a for-like loop to iterate
trough columns, rows and selection list items (<Resolve i=“from 1 to
List.getSize(); i++1”). Furthermore DESK-A allows a numerical
representation of iteration sets (<Resolve next_col_sequence =
“3,4,5,4,5,6,...”) for column, row and item indexes. This kind of
specification becomes more natural and easy-to-understand for non-expert users.

3 Related Work

One of the main limitations of early PBD systems that monitor actions [5] is that they
are too literal. Some of these systems replay a sequence of actions at the keystroke
and mouse-click level, without taking any account of context or attempting any kind
of generalization. By contrast, later works are based on recording the user’s actions at

174 J.A. Macías and P. Castells

a more abstract level and making explicit attempts to generalize them. However, they
have been demonstrated only in special, non-standard, often tailor-made software
environments (see [9]).

Our approach aims at providing PBD techniques for domain-independent web-
based interfaces, focused on dealing with high level tasks where different domains
have been proposed in order to evaluate the level of trust of the tool. DESK-A is
comparable to Predictive Interfaces [6] and Learning Information Agents [1]
approaches, where the system observes the user while she interacts with the
environment. These approaches assist the user by predicting and suggesting some
commands to carry out tasks automatically.

Eager [5] is one of the most famous PBD attempts to bring together PBD and
Predictive Interfaces. Eager is a Macintosh-based assistant which detects consecutive
occurrences of a repetitive task, thus Eager proposes the user to complete the loop
automatically. The loop is inferred by observing the user’s actions. Eager needs the
user to enter two consecutive tasks. This becomes a limitation since occurrences do
not have to appear consecutive.

Familiar [22] overcomes some Eager’s limitations but it also does not address the
previous mentioned problem. Other works, like APE and SMARTEdit (both
described in [9]) attempt to solve this difficulty by using machine-learning
mechanisms in order to learn efficiently and rapidly when to make a suggestion and
which sequence of actions to suggest to the user.

DESK-A analyses the monitoring model, regardless of the number and the
sequence of user actions, and finds meaningful high-level information about the
user’s intents. DESK-A does not need to learn about the user’s behavior and operates
in-real time, without the necessity of machine-learning algorithms. As well as
Familiar, DESK-A is domain-independent, but in DESK-A the domain information is
used in order to enhance the inference process.

Some Lieberman’s earlier work like Mondrian (described in [5]) was based on
AppleScript to monitor the user and control applications, but it does not exploit its
domain independence and high-level application knowledge. Similarly, in TELS [17]
the system takes into account the user’s actions, inferring iteration patters for
addressing loops and conditions. TELS enables the end-user to meet the inference
process, by asking for her opinion. In DESK-A, the system avoids the user from
having to make assumptions of the inference mechanism, the PBE-based inference
process is being as transparent as possible.

The use of data models was already present in PBE systems like Peridot [16] and
HandsOn [3]. In a very simple form, Peridot enables the user to create a list of sample
data to construct lists of user interface widgets. The data model in Peridot consists of
lists of primitive data types. In HandsOn, the interface designer can manipulate
explicit examples of application data at design-time to build custom dynamic displays
that depend on application data at run-time. Our view in this regard is that it is
interesting to lift these restrictions and support richer information structures. To this
end, DESK-A uses ontology-based domain information for user intent
characterization.

Concerning EUD related work, there has been interesting approaches during last
two years. WebRevenge [20] makes the reverse path of a web page. WebRevenge
generates a CCTT (ConCurTaskTrees, see [21]) based task model by analyzing the
interaction as well as the web interface elements: tags and links. WebRevenge works

Finding Iteration Patterns in Dynamic Web Page Authoring 175

together with TERESA [15], an abstract authoring tool for modeling applications
from CCTT based task models. TERESA makes the straight engineering and
WebRevenge the reserve one, in order to carry through an approach that allows for
migration to different platforms. By contrast DESK is intended to assist the user while
s/he interacts with the system rather than using it as a multi-modal generation system.
DESK also takes into account user interaction and, in addition, an ontological data
model as well as information extracted from the interaction. DESK uses a low-level
task model rather than a CCTT based task model, where interface objects, domain
information and user actions are embedded to enrich the semantic of the monitoring
model.

Another interesting work also closely tied to EUD paradigm is LAPIS [14].
LAPIS is a web scraper that allows for rendering high conceptual level information by
means of a pattern library using a simple web browser. LAPIS parsers the HTML and
transforms tag and link level elements into conceptual representations that help end-
user understand web information easily. As well as LAPIS, DESK parsers HTML and
characterizes information from the page by using a data model. By contrast DESK
enables the user to authoring the web page, so the user’s actions are taking into
account and analyzed as an important step of the process.

Personal Wizards [2] is also a great contribution to EUD as a PBE-based system.
This approach tracks user actions and records interaction from an expert. The system
generates a wizard in order to guide a non-expert user throughout the application.
Personal Wizards are intended to help users configure Windows based applications
easily.

4 Conclusions

We have presented an approach for inferring the user’s intents in a WYSIWYG web-
based authoring environment. Our approach is based on PBE strategies such as
monitoring the user during the interaction. In addition our system features data
models for enriching the user’s actions with semantics. We have also reported on a
model-based representation of user actions for detecting and processing iteration
patterns.

Our authoring environment, DESK, features a specialized assistant, namely
DESK-Agent detects the user’s high level tasks throughout the interaction and
executes heuristics to achieve transformations on presentation widgets for automating
iterative tasks. DESK-A checks up on pre-activation condition and searches the
monitoring model for obtaining meaningful information about widget characteristics.
Therefore IP Algorithms exploit widget models to build an iterator for moving
elements from one widget to another. This automates a great deal of transformation
processes and provides the user with assistance to complete iterative tasks on her
behalf. Furthermore, DESK-A can deal with non-regular patterns by defining a pool.
This information is part of the agent configuration and can be set-up by the user. This
allows to build more sophisticated patterns for automatically DESK-A to address.

The main idea of DESK-A is to provide with an assistant to help end-user carry
out different, somehow hard to achieve, kind of actions in editing web pages.
However, this mechanism can be extended for increasing productivity in user

176 J.A. Macías and P. Castells

interaction by means of providing non-expert user with continuous assistance in her
daily solving activities with computer applications as well as generating programming
code without the necessity of learning programming or specification languages. This
challenge can be carried through by exploiting the monitoring and semantic detection
strategies. The main goal is to assist the user in a great deal of different scenarios,
such as classical interface builders and toolkits, authoring tools for generating model-
based user interfaces and, in general terms, programming environments. To this
purpose, the abstract mechanism of pattern detection can be extended and new IP
Algorithms can be created, in order for other kind of user intents to be detected by the
system regardless of the domain and the interface used.

In general terms, DESK works according to EUD paradigm. The authoring tool
helps end-user modify a web page generated by a previous application. This way the
system generates a programmatic model of user actions as a high-level knowledge
representation in order to finally modify the generation procedure of the web page.
The end-user is continuously assisted while s/he interacts with the authoring tool.
DESK ensures the Gentle Slope of Complexity [8] where expressiveness and
complexity of use are balanced by the means of the WYSIWYG environment; low
abstract representation imply low rate of expressiveness but also easy of use.

As DESK-A is based on an ontology-driven domain model [4], it works
regardless of the domain applied. Several scenarios such as educational, travel and e-
shopping have been used in order to evaluate the efficiency of the system. In [13]
there is an experience carried out with end-users in order to evaluate the usability of
DESK as an authoring tool. Although the comments of the results are out of the scope
of this paper, the main outcomes of the experience pointed out the high satisfaction
rate of the user with respect to the tool. This is due to the similarity that the users
perceive with respect to ordinary web editing and browsing tools, but by contrasts
with some add-on mechanisms that allow for editing dynamic web pages and assisting
the user in accomplishing cumbersome tasks.

Acknowledgements

The work reported in this paper is being supported by the Spanish Ministry of Science
and Technology (MCyT), project number TIC2002-1948.

References

1. Bauer, M., Dengler, D. and Paul, G. Instructible Information Agents for Web Mining. In
Proceedings of the International Conference on Intelligent User Interfaces (January 9-12,
pp. 21-28, New Orleans, USA, 2000).

2. Bergman, L., Lau, T., Castelli, V. and Oblinger, D.: Personal Wizards: collaborative end-
user programming. In Proceedings of the End User Development Workshop at CHI’2003
Conference (Ft. Lauderdale, Florida, USA. April 5-10).

3. Castells, P. and Szekely, P. Presentation Models by Example. En: Duke, D.J., Puerta A.
(eds.). Design, Specification and Verification of Interactive Systems. Springer-Verlag, pp.
100-116, 1999.

Finding Iteration Patterns in Dynamic Web Page Authoring 177

4. Castells, P. and Macías, J.A.: Context-Sensitive User Interface Support for Ontology-
Based Web Applications. Poster Session of the 1st. International Semantic Web
Conference (ISWC’02), Sardinia, Italia; June 9-12th, 2002.

5. Cypher A. (ed.).: Watch What I Do: Programming by Demonstration. The MIT Press,
1993.

6. Darragh, J. J. and Written, I.H.: Adaptive predictive text generation and the reactive
keyboard. Interacting with Computers 3, no. 1:27-50, 1991.

7. Hurst, Matthew Francis: The Interpretation of Tables in Texts. PhD. Thesis. University of
Edinburgh, 2000.

8. Klann, M.: End-User Development Roadmap. In Proceedings of the End User
Development Workshop at CHI’2003 Conference (Ft. Lauderdale, Florida, USA. April 5-
10).

9. Lieberman, H. (ed): Your Wish is my Command. Programming By Example. Morgan
Kaufmann Publishers. Academic Press, USA. 2001.

10. Macías, J.A. and Castells, P. Dynamic Web Page Authoring by Example Using Ontology-
Based Domain Knowledge. In Proceedings of the International Conference on Intelligent
User Interfaces (IUI'03) (Miami, Florida, USA. January 12-15).

11. Macias, J.A. and Castells, P. Using Domain Models for Data Characterization in PBE. In
Proceedings of the End User Development Workshop at CHI’2003 Conference (Ft.
Lauderdale, Florida, USA. April 5-10).

12. Macías, J.A.; Castells, P.: DESK-H: building meaningful histories in an editor of dynamic
web pages. In Proceedings of the 11th Internacional Conference on Human-Computer
Interaction (HCII). Creta, Grece, June 23-27, 2003.

13. Macías, J.A.: Authoring Dynamic Web Pages by Ontologies and Programming by
Demonstration Techniques. PhD. Thesis. Departamento de Ingeniería
Informática. Escuela Politécnica Superior. Universidad Autónoma de Madrid.
September, 2003. http://www.ii.uam.es/~jamacias/tesis/thesis.html.

14. Miller, Rober C.: End User Programming for Web Users. In Proceedings of the End User
Development Workshop at CHI’2003 Conference (Ft. Lauderdale, Florida, USA. April 5-
10).

15. Mori, G., Paternò, F. and Santoro, C.: CTTE: Support for Developing and Analysing Task
Models for Interactive System Design. IEEE Transactions in Sotware Engineering. IEEE
Press. Vol. 28, No.8, pp. 797-813, August 2002.

16. Myers, B. A. Creating User Interfaces by Demonstration. Academic Press, San Diego,
1988.

17. Mo, D.H.; Witten, I.H.: Learning text editing tasks from examples: A Procedural
approach. Behaviour & Information Technology, Vol. 11, No. 1, pp. 32-45, 1992.

18. Muslea, I. Extraction Patterns for Information Extraction Tasks: A Survey. In Proceedings
of AAAI Workshop on Machine Learning for Information Extraction (Orlando, Florida,
July, 1999).

19. Network of Excellence on End-User Development. http://giove.cnuce.cnr.it/EUD-NET.
20. Paganelli, L., Paternò, F.: Automatic Reconstruction of the Underlying Interaction Design

of Web Applications. Proceedings of the SEKE Conference, pp. 439-445. ACM Press,
Ischia, 2002.

21. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications.
Springer Verlag, 2001.

22. Paynter, G.W.; Witten, I.H.: Automating Iteration with Programming by Demonstration:
Learning the User’s Task. Proccedings of the IJCAIWorkshop on Learning about Users,
16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999.

23. Sahuguet, A.; Azavant, F.: building Intelligent Web Applications Using Lightweight
Wrappers. Data and Knowledge Engineering, 2000.

24. Shneiderman, B.: Leonardo’s Laptop. The MIT Press, 2003.

178 J.A. Macías and P. Castells

Discussion

[Morton Harning] Your motivation for this work is a wish for simplifying the design
of dynamic web-pages ... How does what you have shown help here? Are you not
only improving editing of static pages? Hence, this is more about helping avoid
monotonous task in any text editor ... not programming by example?

[José Macías] Definitely this is a help in order for the end-user to modify
dynamic web pages. You are modifying the final version of a dynamically
generated page; this will be interpreted into change of the presentation
model. The system infers the mappings and makes the changes
automatically. So that Programming by Example takes place.

[Morton Harning] When I present information in a table it is most often highly
structured data. Hence, the structure will be already in the domain model. Do you use
that kind of information in the algorithm or is it only a question of changing simple
layout rules?

[José Macías] We do use knowledge of sequences in the domain model. In
other words, the model-based information of the interface is represented in
such a model. Our system deals with this semantic information and infers
high-level changes the user wants to accomplish by means of just analyzing
the low-level actions s/he carries out.

[Michael Harrison]: Why distinguish between regular and non-regular patterns?

[José Macías] These are simply linear algorithms, that can be applied when
the insert/copy/paste sequence is linear. Non-linear patterns have to be
defined in a separated pool as they cannot be detected by linear algorithms
(see some examples of linear and non-linear cases in the paper).

[Bonnie E. John] Have you done an analysis of the types of dynamic web pages that
are in existence and the frequencies of those types? What percentage of the space
does your tool cover?

[José Macías] We believe that we can handle 100% of what dynamic web
pages in existence today as long as theses pages can be represented using our
model-based approach. We have all the expressibility necessary and all the
algorithms in place to handle what we have seen in existence on the web
today.

[Michael Harrison] 95% uptake of use - what does this mean in practice?

[José Macías] This is the hit rate of DESK in inferring high-level changes to
Dynamic Web Pages from low-level actions the user achieves. Since it is
hard to follow the reverse path (from the final generated web page to the
underlying models), some ambiguity can appear and has to be dealt (see
paper in detail).

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 179-199, 2005.
 IFIP International Federation for Information Processing 2005

Very-High-Fidelity Prototyping for Both Presentation
and Dialogue Parts of Multimodal Interactive Systems

David Navarre, Pierre Dragicevic, Philippe Palanque, Rémi Bastide & Amélie Schyn

LIIHS-IRIT, Université Paul Sabatier, F-31062 Toulouse Cedex, France
{dragice, navarre, palanque, bastide, schyn}@irit.fr

http://liihs.irit.fr/{navarre, dragice, palanque, bastide, schyn}

Abstract. This paper presents a tool suite (made up of two previously unrelated
approaches) for the engineering of multimodal Post-WIMP Interactive Systems.
The first element of this integration is ICOM (a data-flow model dedicated to
low-level input modelling) and its environment ICON which allows for editing
and simulating ICOM models. The other element is ICOs (a formal description
technique mainly dedicated to dialogue modelling) and its environment
PetShop which allows for editing, simulating and verifying ICOs models. This
paper shows how these two approaches have been integrated and how they
support multimodal interactive systems engineering. We show on a classical
rubber banding case study how these tools can be used for prototyping
interactive systems. We also present in details how the changes in the
interaction techniques impact the models at various levels of the software
architecture.

Keywords. Interactive Systems Engineering, Multimodal interaction,
Prototyping, CASE tools, Formal methods, formal description techniques; Post-
WIMP.

Introduction

According to the recurring desire of increasing the bandwidth between the interactive
system and the users more sophisticated interaction techniques called Post-WIMP
have been proposed. However, the current contribution from the research community
to the construction of such interactive systems remains at the level of working
prototypes showing the feasibility and making empirical evaluation possible.

Recent contributions in the field of model-based approaches have been explicitly
addressing this issue of coping with new interaction techniques. The aim of the work
presented in this paper is to describe an approach (that is able to go beyond
prototyping post-WIMP interaction techniques) fully integrated within interactive
systems development. To this end we have integrated work done on low-level input
management [7] with work on formal description techniques of dialogue models [3,
16].

Several notations have already proposed for dealing with post WIMP interaction
techniques and for different kinds of applications. Data-flow-based notations such as
Wizz'Ed [10] or ICon [7] have been proposed for dealing with low-level flow of

180 D. Navarre et al.

events produced directly by input devices. This notion of flow has also been
addressed with other notations where classical event and status based behaviours have
been enhanced with continuous modelling such continuous Petri nets as in Marigold
[18] or Hynets [17]. Higher-level models of this kind of interaction techniques have
also been addressed using state-based notations as with basic Petri nets in [13] or with
high-level Petri nets [16]. Early work in the field of multimodal interaction techniques
has also addressed the aspects of fusion of modalities and a comparison of these work
can be found in [6].

The paper is structured as follows. Section 2 presents the Input Configuration
approach that is dedicated to low-level input handling in post-WIMP interactive
systems. Section 3 recalls the Interactive Cooperative Objects formalism and its
environment PetShop. In these sections, the two model-based approaches are
exemplified on the same simple case study of the rubber banding interaction
technique. Section 4 details a generic framework for the integration of these two
approaches. Section 5 introduces a line drawing application exploiting the rubber
banding interaction technique previously presented. The aim of this small case study
is to show that the model-based approaches that we propose can deal completely with
non standard interface components and innovative interaction techniques. This section
presents also how to modify that case study to allow for multimodal (two handed)
interaction. For space reasons, only such multimodal interaction technique is
presented here while several others (including voice and gesture) have been dealt with
in a similar way and presented at the conference.

Input-Configurations Modelling and Prototyping

ICON (Input Configurator) is a tool for designing input-adaptable interactive
applications, i.e., applications that can be controlled with a wide variety of alternative
input devices and techniques. ICON provides an interactive editor for the ICOM (Input
Configuration Model) graphical notation. In this section, we give a brief overview of
the ICOM notation and the ICON visual prototyping environment. More details on the
notation and its associated tools can be found in [7, 8, 9].

Overview of the ICOM Notation

The ICOM (Input Configuration Model) notation describes low-level input handling
using interconnected modules, with reactive data-flow semantics. In this section, we
briefly describe the main features and concepts behind ICOM.

Input Configurations
Devices and slots. ICOM’s main building blocks are devices, which are a broad
generalization of input devices: ICOM devices can produce output values, but can also
receive input values. Fig. 1 shows on the left the graphical representation of a device.
A device has typed channels called input slots and output slots, each type having a
distinct graphical representation (e.g., circle for Booleans, triangle for integers). Slots
can be hierarchically grouped to form structured types, as shown on Fig. 1.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 181

Input ConfigurationDevice

Fig. 1. Elements of the ICOM notation.

Implicit I/O. Whereas the basic behaviour of an ICOM device is processing input
values into output values, alternative behaviour is shown on the device by the
presence of “notches” (see Fig. 1). Non-deterministic devices are described as having
implicit input, i.e.,additional source of information not fully described by its set of
input slots. Example of such devices include devices which are producing data on
their own (physical input devices), or asynchronous devices which are temporally
non-deterministic. Similarly, devices having implicit output produce alternative
effects in addition to simply putting values on the output slots. Examples are devices
that manipulate application objects, or devices producing graphical or sound
feedback.

Connections. An input slot of a device can be linked to one or several compatible
output slots of other devices by connections, which are represented by wires. ICON’s
execution model forbids multiple connections on the same input slot, as well as
connections that generate cyclic dependencies.

Types of devices. There are three main categories of devices: System devices
describe system resources such as input peripherals; Library devices are system-
independent utility devices such as processing devices and adapters; Application
devices are devices that control a specific application.

Input configurations. An input configuration is defined by a set of system and
application devices, as well as a set of library devices and connections which map the
system devices to the application devices.

ICON is modular, and subparts of an input configuration can be encapsulated into
compound devices. For example, an input device and a feedback device can be
connected then grouped to form a compound device having both external input and
external output.

ICOM’s Execution Model
Whereas the contract of a device is to update its output slots every time it is asked to,
ICoM’s execution model describes which devices must be triggered and when, and

182 D. Navarre et al.

how values are propagated to other devices. The propagation mechanism used,
described in [9], is very simple and effective.

ICoM’s execution model follows the semantics of reactive synchronous languages
such as Esterel [5] or Lustre [12], in which information propagation is conceptually
instantaneous. In reactive systems, the environment (e.g., the source of input signals)
is the master of the interaction, as opposed to conversational systems in which clients
wait to be served. As a result, the way we handle input is closer from device drivers,
which are reactive, than from event-driven mechanisms, which are intrinsically
conversational.

Describing Interaction Techniques as Input Configurations
From ICOM’s point of view, interaction techniques are transformation flows with
feedback. Fig. 2 gives an example of scrolling through a document, and shows the
feedback loop through implicit I/O. The Mouse device receives implicit input from
the user, the Cursor device produces immediate feedback towards this user, and the
Scrollbar tells the application to update its document view.

Mouse Cursor Scrollbar

Fig. 2. Feedback flow while scrolling through a document

The ICON Environment

The ICON (Input Configurator) Input Toolkit contains an extensible set of system
devices and library devices for building input configurations. It provides a reactive
machine for executing them, as well as a graphical editor for rapid prototyping. ICON
is written in Java, and uses native libraries for managing input devices. In this section,
we briefly describe the main features of ICON.

ICON Devices
System devices. ICON’s system devices provide a low-level view of standard and
alternative input devices. Under Microsoft Windows operating systems, ICON
currently supports multiple mice, graphical tablets, gaming devices and 3D isometric
controllers, speech and gesture recognition, and MIDI controllers. System output
devices are also available, such as Midi devices for playing music on soundcards, or
speech synthesis devices.

Library devices. The ICON toolkit has a set of built-in utility devices including
mathematical and boolean operators, signal processing devices, type and domain
adapters, and devices for conditional control and dispatch. It also provides a set of
graphical feedback devices such as cursors and semi-transparent components, which
support overlay animation on top of Swing frames.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 183

Toolkit devices. ICON provides a set of “Swing devices” for controlling existing
Java applications that have no knowledge of ICON. One device allows generic control
of any Swing widget by sending them mouse and keyboard events, whereas a set of
widget-specific devices allow moving scrollbars programmatically or sending strings
and caret commands to text components. Event dispatching strategies such as picking
and focus are also encapsulated into individual devices.

Application devices. Developers can enhance controllability of their application by
implementing devices that are specific to their application. Writing an application
device is quite straightforward, and mainly requires declaring a set of input slots and
implementing an “update” method which is automatically called each time an input
slot has received a signal [9].

Fig. 3. A screenshot of the Input Editor.

The Input Editor
ICON configurations can be built or modified by direct manipulation through a
graphical editor. An early prototype of this editor has been described in [7]. In this
contribution, the authors showed how the behavior of a standard mouse/keyboard
configuration could be easily changed using the editor and its dedicated interaction
techniques. In [9], we also give a subset of interaction techniques that can be
described with our graphical notation and directly built using ICON.

The Fig. 3 shows a screenshot of the Input Editor window. Library devices and
available system and application devices are listed on the left pane, and organized in
folders just like a file system. Clicking on a folder (top left pane) displays the devices
it contains (bottom left pane). Those devices are dragged on the editing pane to be
used. The minimalist input configuration shown on the editing pane of the Figure 7
describes how a freehand tool from a drawing application called ICONDraw [7] is

184 D. Navarre et al.

controlled using the mouse. The “sum” devices convert relative (delta) positional
values sent by the low-level mouse into absolute values.

The toolbar on the top of the window contains two buttons for executing and
stopping the input configuration. Execution is fast and does not need compilation,
thus allowing easy testing and refinement of input configurations.

One Simple Example: One-Handed and Two-Handed Rubber Banding
ICON’s graphical editor allows the application designer to quickly build and test input
configurations that make use of alternative sets of physical input devices, or modify
existing configurations to adapt to enriched or impoverished input. Fig. 4 illustrates
how a conventional technique can be changed into a Post-WIMP technique when a
new input device (a graphical tablet) becomes available. The left upper part of the
Fig. 4 shows the part of ICONDraw’s default input configuration which describes the
standard rubber-banding technique for drawing lines: the user indicates the first end
of the segment by pressing the mouse button, then the other end by dragging and
releasing the button. The “firstThen” device encapsulates the simple automaton which
implements this behavior. As shown on the lower part of the Fig. 4, this configuration
has then been simplified so that each end of a segment being created is controlled by a
separate pointing device. By doing this, the designer has just described a very basic
bimanual interaction technique (Figure 8 on the right).

Fig. 4. A conventional line drawing technique, modified to make use of a second pointing
device.

Dialogue Modelling and Prototyping

This section recalls the main features of the ICO formalism, which we use to model
the case study. We encourage the interested reader should look at [2, 3] for a complete
presentation of the formal description technique.

Overview of the ICO Formalism

The Interactive Cooperative Objects (ICOs) formalism is a formal description
technique dedicated to the specification of interactive systems [3]. It uses concepts
borrowed from the object-oriented approach to describe the structural or static aspects

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 185

of systems, and uses high-level Petri nets [11] to describe their dynamic or
behavioural aspects.

Petri Nets is a graphical formalism made up of four components: the state variables
(called place, depicted as ellipses), states changing operators (called transitions,
depicted as rectangles), arcs, and tokens. Tokens are hold by places; arcs link
transitions to places and places to transitions. The current state of a system is fully
defined by the marking of the net (i.e., both the distribution and the value of the
tokens in the places). For a state change to occur a transition must be fired. A
transition is fireable if and only if each of its input places holds at least one token.
When the transition is fired, one token is removed from each input place and a token
is deposited in each output place.

ICOs are dedicated to the modelling and the implementation of event-driven
interfaces, using several communicating objects to model the system, where both
behaviour of objects and communication protocol between objects are described by
Petri nets. The formalism made up with both the description technique for the
communicating objects and the communication protocol is called the Cooperative
Objects formalism (CO and its extension to CORBA COCE [4]).

In the ICO formalism, an object is an entity featuring four components:
Cooperative Object (CO): a cooperative object models the behaviour of an ICO.

It states how the object reacts to external stimuli according to its inner state. This
behaviour, called the Object Control Structure (ObCS) is described by means of high-
level Petri net. A CO offers two kinds of services to its environment. The first one,
described with CORBA-IDL [15], concerns the services (in the programming
language terminology) offered to other objects in the environment. The second one,
called user services, provides a description of the elementary actions offered to a user,
but for which availability depends on the internal state of the cooperative object (this
state is represented by the distribution and the value of the tokens (called marking) in
the places of the ObCS).

Presentation part: the Presentation of an object states its external appearance.
This Presentation is a structured set of widgets organized in a set of windows. Each
widget may be a way to interact with the interactive system (user system
interaction) and/or a way to display information from this interactive system (system

 user interaction).
Activation function: the user system interaction (inputs) only takes place

through widgets. Each user action on a widget may trigger one of the ICO's user
services. The relation between user services and widgets is fully stated by
theactivation function that associates to each couple (widget, user action) the user
service to be triggered.

Rendering function: the system user interaction (outputs) aims at presenting to
the user the state changes that occurs in the system. The rendering function maintains
the consistency between the internal state of the system and its external appearance by
reflecting system states changes.

ICO are used to provide a formal description of the dynamic behaviour of an

interactive application. An ICO specification fully describes the potential interactions
that users may have with the application. The specification encompasses both the
"input" aspects of the interaction (i.e., how user actions impact on the inner state of
the application, and which actions are enabled at any given time) and its "output"

186 D. Navarre et al.

aspects (i.e., when and how the application displays information relevant to the user).
Time-out transitions are specials transitions that do not belong to the categories
above. They are associated with a timer that automatically triggers the transition when
a dedicated amount of time has elapsed. When included in a system model such
transition is considered as a system transition. They can also be included in a user
model representing spontaneous user's activity.

An ICO specification is fully executable, which gives the possibility to prototype
and test an application before it is fully implemented [14]. The specification can also
be validated using analysis and proof tools developed within the Petri nets community
and extended in order to take into account the specificities of the Petri net dialect used
in the ICO formal description technique.

ICO Models for a Rubber Banding Interaction Technique

The rubber banding is a very classical interaction technique used in most graphical
tools. It allows a user to draw a line (or a shape) based on the "drag and drop"
interaction technique, where, while dragging, a temporary line is drawn, called ghost.
We present here, through this classical example, the four parts of an ICO
specification: the behaviour, the presentation part and the link between them stated by
the activation and the rendering function.
1. Behaviour (ObCS). The behaviour of the rubber banding application is

represented by its ObCS shown in Fig. 5. Initially, the application is in an idle
state. When the mouse button is pressed, it starts the drawing of a ghost that is
updated while moving the mouse pointer (dragging). When the mouse button is
released, the definitive line is drawn, and the application returns in its idle state.

Fig. 5. Behaviour of the rubber banding interaction technique

2. Presentation part. The presentation part described the external presentation part
of the drawing line application. We describe hereafter (Fig. 6) a set of basic
rendering methods that characterise the DrawablePanel. This set of methods is
used to produce rendering by the rendering function (see the point 3).

3. Rendering Function. The rendering function describes how state changes impact
the presentation part of the application. As state changes are linked to token
movements, rendering items may be linked to either place or transition. Figure 7
describes the rendering function for the rubber banding application. The first line,
for instance, shows that when a token enters the place Dragging, the
corresponding rendering is to draw a ghost between the coordinates brought by the
token.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 187

Class DrawableJPanel
 Rendering methods {
 drawGhost(int x0, int y0, int x1, int y1) {
 //Draw a dashed line between point (x0, y0)
 //and point (x1, y1).
 }
 eraseGhost(int x0, int y0, int x1, int y1) {
 //Erase the dashed line drawn between
 // point (x0, y0) and point (x1, y1).
 }
 drawLine(int x0, int y0, int x1, int y1) {
 //Draw a line between point (x0, y0)
 //and point (x1, y1).
 }
 }
}

Fig. 6. Overview of the widget implied in the rubber banding application.

ObCS element Rendering method
Name Feature

Token <x0, y0, x1, y1> Entered drawGhost(x0, y0, x1, y1) Place
Dragging Token <x0, y0, x1, y1> Removed eraseGhost(x0, y0, x1, y1)
Transition
EndDrag

Fired with <x0, y0, x1, y1> drawLine(x0, y0, x1, y1)

Fig. 7. Rendering function of the rubber banding application.

4. Activation Function. The activation function (shown by Fig. 8) relates the events
produced by a widget to the transitions of the ObCS. Thus if the transition is
fireable and the event is produced (by a corresponding user action on the widget)
then the transition is fired (and its action is executed).

Widget Event Service

Panel Move Move
Panel MouseDown <x, y> BeginDrag
Panel MouseDrag <x, y> Drag
Panel MouseReleased <x, y> EndDrag

Fig. 8. Activation function of the rubber banding application

Overview of PetShop Environment

In this section we present precisely how PetShop environment supports the design
process of interactive systems. Some screen shots are included in order to show what
is currently available.

ObCS Editor
Our approach is supported by a tool call PetShop which includes a distributed
implementation of high-level Petri net interpreter written in Java. All the components
of the ObCS can be directly built using PetShop. PetShop also automatically

188 D. Navarre et al.

generates an Object Petri net from the IDL description [11]. The edition of the Object
Petri net is done graphically using a palette of tools. The left part of the toolbar is
used for generic functions such as load, save, cut copy and paste. The right hand side
of the toolbar drives the execution of the specification.

Edition of the Presentation
Currently, PetShop is linked to JBuilder environment for the creation of the
presentation part of the ICOs. Thus creation of widgets is done by means of JBuilder
interface builder. However, we have not yet created a visual tool for editing the
rendering and the activation function that still have to be typed-in in Java.

Execution Environment
A well-known advantage of Petri nets is their executability. This is highly beneficial
to our approach, since as soon as a behavioural specification is provided in term of
ObCS, this specification can be executed to provide additional insights on the possible
evolutions of the system.

Fig. 20 shows the execution of the specification of the line drawing application in
Petshop. The ICO specification is embedded at run time according to the interpreted
execution of the ICO. At run time user can both look at the specification and the
running application. They are in two different windows overlapping as in Fig. 20. The
window Line Drawing Application corresponds to the execution of the window with
the ICO model underneath. In this window we can see the set of transition that are
currently fireable (represented in dark grey and the other ones in light grey). This is
automatically calculated from the current marking of the Object Petri net. Each time
the user acts in the Line Drawing Application windows, the event is passed on to the
interpreter. If the corresponding transition is fireable then the interpreter fires it,
performs its action (if any), changes the marking of the input and output places and
performs the rendering associated (if any).

Coupling Input Configurations and Dialogue

This section presents how the two approaches have been effectively integrated. We
show first how this coupling takes place at the model level (ICOM and ICOs) and then
at the environment level (ICON and PetShop).

Models Coupling: ICOM and ICOs

Whereas ICO’s activation function lists the couples Widget Event and the user
services they trigger, ICOM describes how each event is produced. For space reasons
we only present here a simplified integration between ICO and ICoM models.

In an ICO specification, the Widget x Event represents the higher level event
triggered by a widget translating the classical input events it receives. A widget thus
behaves as a transducer that converts lower level events into higher level events,
called widget events.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 189

A simple way to couple ICoM and ICO is to extend standard widgets in order to
represent them as output devices in ICoM model. Thus the ICoM model describes the
events needed by the widgets. These ICoM output devices are then connected to
ICoM Input devices through links and via other bricks. The resulting ICoM
configuration represents how user actions on the input devices feed the widget with
the correct events.

For instance, the previous section describes the rubber-banding application,
specified with ICO. The activation function (see Figure 7) shows the events produced
by our DrawableJPanel widget (MouseMove, MouseDragged …), but does not make
explicit the input device(s) used. Even if, in this example, the use of a simple mouse
seems natural, we want to be able to deal with other input devices (such as graphical
tablet, joystick, motion capture …). The DrawableJPanel needs three information ((x,
y) coordinates and a dragging trigger) to produce the relevant higher level events. The
corresponding ICoM device is presented by Fig. 9.

Fig. 9. ICoM output device representing inputs needed by the DrawableJPanel

Fig. 10 represents an ICoM configuration providing modelling the transformation
of low level events on the mouse to transformed events in the output device.

Fig. 10. ICoM model for DrawableJPanel

Systems Coupling: ICON and PetShop

In order to implement the link presented at the level of models in previous section, we
need to make an application running within Petshop visible to ICON. This means that
the set of widgets composing the presentation part, the activation and rendering
functions and the dialogue part must register output devices as described above.

Initially, these applications are launched from the PetShop environment. While
running, an input configuration can be deactivated using the Alt-C keystroke. This is
essential as ICON allows redefining input handling at a very low-level, which can
possibly hang all the system. For similar reasons, input configurations can be edited

190 D. Navarre et al.

while paused but not while running. In contrast, the edition and simulation of the ICO
model within Petshop is fully dynamic.

Case Study of a Two Handed Line Drawing Application

In order to present the tool suite that we have developed for the engineering and very-
high prototyping of multimodal interactive systems, this section presents the use of
this tool suite on a case study. We first present the case study offering standard
interaction technique and show how this case study can be easily extended in order to
be manipulated by means of various input devices and thus using multimodal
interaction techniques.

The Line Drawing Application

This application (shown on Fig. 11) allows a user to handle a line, defined by two
points. Modification of the line uses a rubber banding-like interaction technique for
each point.

Fig. 11. The line drawing application

Application Specification

Behaviour (ObCS). The ICO model in Fig. 12 describes the behaviour of the rubber
banding interaction technique. Initially, the application is in an idle state. When the
mouse button is pressed on the left point (resp. right point), it starts the drawing of a
ghost (a dashed line). While moving the mouse pointer (dragging) the dashed-line is
updated. When the mouse button is released, the definitive line is drawn, and the
application returns in its idle state. With respect to the rubber banding interaction
technique presented in Fig. 5 the model is duplicated here as two rubber banding are
available at a time (one for each end of the line).

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 191

Fig. 12. Behaviour of the line drawing application.

Presentation part. The presentation part describes the external presentation part of

the application. We describe hereafter (Fig. 13) a set of basic rendering methods that
characterise the LineDrawingJPanel. This set of methods is used to produce rendering
by the rendering function described in next section.

Class LineDrawingJPanel
 Rendering methods {
 drawGhost1(int x, int y) {
 //Draw a dashed line between point (x, y)
 //and the second point of the line.
 }
 eraseGhost1(int x, int y) {
 //erase the dashed line between point (x, y)
 //and the second point of the line.
 }
 drawLine1(int x, int y) {
 //Draw a line between point (x, y)
 //and the second point of the line.
 }
 drawGhost2(int x, int y) {
 //Draw a dashed line between point (x, y)
 //and the first point of the line.
 }
 eraseGhost2(int x, int y) {
 //erase the dashed line between point (x, y)
 //and the first point of the line.
 }
 drawLine2(int x, int y) {
 //Draw a line between point (x, y)
 //and the first point of the line.
 }
 }
}

Fig. 13. Overview of the widgets employed in the line drawing application.

192 D. Navarre et al.

Rendering Function. The rendering function describes how state changes in the
Petri net describing the behaviour of the application impact the presentation part of
the application. As state changes are linked to token moving from places to places,
rendering items may be linked to either place or transition. Fig. 14 describes the
rendering function for the drawing line application. The first line, for instance, shows
that when a token enters the place Dragging, the corresponding rendering is to draw a
ghost between the coordinates brought by the token.

ObCS element Rendering method
Name Feature

Token <x, y> Entered drawGhost1(x, y) Place Dragging_1
Token <x, y> Removed eraseGhost1(x, y)

Transition Up_1 Fired with <x, y> drawLine1(x, y)

Token <x, y> Entered drawGhost2(x, y) Place Dragging_2
Token <x, y> Removed eraseGhost2(x, y)

Transition Up_2 Fired with <x, y> drawLine2(x, y)

Fig. 14. Rendering function of the line drawing application.

Activation Function. The activation function (shown by Fig. 15) relates the events

produced by a widget to the transitions of the ObCS. Thus if the transition is fireable
and the event is produced (by a corresponding user action on the widget) then the
transition is fired (and its action is executed). The events produced are linked to one
of the two points of the line. MouseDown1, MouseDrag1 and MouseReleased1
represents classical drag’n’drop events that occurs related to the first point. The three
others events are linked to the second point.

Widget Event Service

LineDrawingJPanel MouseDown1 <x, y> Down_1
LineDrawingJPanel MouseDrag1 <x, y> Drag_1
LineDrawingJPanel MouseReleased1 <x, y> Up_1
LineDrawingJPanel MouseDown2 <x, y> Down_2
LineDrawingJPanel MouseDrag2 <x, y> Drag_2
LineDrawingJPanel MouseReleased2 <x, y> Up_2

Fig. 15. Activation function of the line drawing application

Interface Between the ICO Specification and ICOM

As stated in section 4, the widget part is extended into an ICoM output device. Fig. 16
shows the ICoM model that represents the inputs needed by the line drawing
application.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 193

Fig. 16. ICoM device representing inputs needed by the LineDrawingJPanel of the ICO
specification

Input Configuration of the Conventional Line Drawing Application

The input configuration of the line drawing application describes how it is
manipulated with a mouse. Fig. 17 shows this configuration: Mouse moves are
transformed to coordinates (sum components) then used to animate a mouse cursor on
top of the application frame (cursor component). In addition to the coordinates, the
cursor propagates also the state of the left mouse button to the rest of the
configuration. Shortcuts, represented by grey vertical lines, are used to display the
same cursor device at different places of the configuration (this means that the same
cursor can manipulate both ends of the line).

Fig. 17. Input configuration of the conventional (i.e. monomodal) line drawing application

The two copies of the cursor device thus provide the LineDrawingJPanel (of the ICO
specification) with the correct parameters (i.e. x and y coordinates and the dragging
state).

194 D. Navarre et al.

Two Handed Line Drawing Application

This section presents a modification of the case study in order to allow for two handed
interaction on the line drawing application. The point is not here to discuss about the
usability of such interaction technique but to show the impact of changing the
behaviour of the application from monomodal interaction technique to a multimodal
one and how the integrated approach proposed in this paper can deal with it.

Fig. 18. A screenshot of ICON’s editor with all available (connected) mice showing on the left
pane (2 USB mice and a PS2 Mouse)

We describe a scenario in which the default input configuration is modified to
handle two mice. In this scenario, each mouse moves a dedicated pointer but both
pointers are used in the same way to control each extremity of the line. This allows
both symmetric bimanual interaction and two-user collaborative interaction with the
line.

Fig. 19. Input configuration of the two-handed line drawing application

When launched, ICON’s editor also shows on the left pane all currently connected
mice as individual devices, including PS/2, serial and USB mice (see Fig. 18). The

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 195

user just has to identify the mice he wants to use (USB mice are sorted according to
the HUB port they are connected to) and drag them in the edition pane. Note that
other pointing devices such as graphical tablets can also be used, or even emulated
with devices such as keyboard or voice recognition.

Fig. 20. Executing the two-handed drawing line application within PetShop

As both pointers share the same behaviour, the configuration described in Fig. 17
only has to be duplicated and mouse devices replaced. Lastly, two instances of this
compound device are instantiated and connected to two separate USB mice, as shown
on Fig. 19.

Fig. 21. Executing the two-handed drawing line application within ICON

196 D. Navarre et al.

When the configuration is edited, it may be executed. Fig. 20 shows the execution
of the two-handed line drawing application within PetShop. Due to the locality
principle of Petri nets (the firing of a transition only has impact on its input and output
places) there is no change to make from the model in Fig. 12 to make the application
usable in a multimodal way.

Fig. 21 shows ICoN environment. It is important to understand that both
environments are use at the same time. This makes it possible to modify the input
configuration (for instance changing the button used for selecting the end of the line)
by changing the lines in the configuration. Behavioral description of the application
can also be changed using PetShop.

Conclusion

This paper has presented a tool suite dedicated to the engineering of multimodal
interactive systems. The ICOs formalism deals with the functional core and the
dialogue part of multimodal interactive systems. The ICON notation deals explicitly
with input devices and input configurations. As these two models are supported by
dedicated edition, simulation and execution environments, we have shown how very
high fidelity prototyping can be performed and its related impact at various levels of
the Arch architectural model.

The application of the notations and tools has been shown on a simple case study
i.e. a bimanual drawing interactive system. This simple case study has shown a
precise example of each model as well as how there edition and simulation.

This work belongs to a more ambitious projects (see acknowledgement section)
dedicated to the engineering of multimodal interactive systems for safety critical
applications including military aircraft cockpits and satellite ground stations. The aim
of this work is not only to provide notations and tools for building multimodal
interactive systems but also to support verification and validation in order to support
certifications activities that are a critical phase in the development process of
interactive safety critical applications.

Acknowledgements

The work presented here is partly funded by French defence agency (Direction
Générale pour l’Armement) under contract n° 00.70.624.00.470.75.96 and by the
French Space Agency CNES (Centre National d'Etudes Spatiales) under the R&T
action n°CC201*02. Special thanks are due to Didier Bazalgette for precise
information about the field of command and control systems in military applications.

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 197

References

1. L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard & M. R. Szezur.
(1991) The Arch Model: Seeheim Revisited. User Interface Developpers' Workshop.
Version 1.0.

2. R. Bastide & P. Palanque. (1995) A Petri-Net Based Environment for the Design of
Event-Driven Interfaces . 16th International Conference on Applications and Theory
of Petri Nets, ICATPN'95, Torino, Italy, 66-83. Giorgio De Michelis, and Michel
Diaz, Volume editors. Lecture Notes in Computer Science, no. 935. Springer.

3. R. Bastide, P. Palanque, Le Duc H., and Mu oz J. Integrating Rendering
Specifications into a Formalism for the Design of Interactive Systems. Proceedings of
the 5th Eurographics workshop on Design, Specification and Verification of
Interactive systems DSV-IS'98 . 1998. Springer Verlag

4. R. Bastide, O. Sy, P. Palanque, and D. Navarre. Formal specification of CORBA
services: experience and lessons learned. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA'2000); Minneapolis,
Minnesota USA. ACM Press; 2000: 105-117. ACM SIGPLAN Notices. v. 35 (10)).

5. G. Berry. (1999) The Esterel v5 language primer. Technical report, april 1999.
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html.

6. J. Coutaz, Paterno F. , Faconti G. , and Nigay L. A Comparison of Approaches for
Specifying MultiModal Interactive Systems. Proceedings of the ERCIM Workshop
on Multimodal Human-Computer Interaction. 165-174. 1993.

7. P. Dragicevic & J-D. Fekete. (2001) Input Device Selection and Interaction
Configuration with ICON. Proceedings of IHM-HCI 2001, Blandford, A.;
Vanderdonckt, J.; Gray, P., (Eds.): People and Computers XV - Interaction without
Frontiers, Lille, France, Springer Verlag, pp. 543-448.

8. P. Dragicevic & J-D. Fekete. (2002) ICON: Input Device Selection and Interaction
Configuration. Companion proceedings of UIST'02, 15th Annual Symposium on
User Interface Software and Technology, Paris, October 2002.

9. P. Dragicevic & J-D. Fekete. (2004) ICON: Towards High Input Adaptability of
Interactive Applications. Internal Report 04/01/INFO, Ecole des Mines de Nantes.
Nantes, France.

10. O. Esteban, S. Chatty, and P. Palanque. Whizz’Ed: a visual environment for building
highly interactive interfaces. Proceedings of the Interact’95 conference, 121-126.
1995.

11. H. J. Genrich. Predicate/Transition Nets, in K. Jensen and G. Rozenberg (Eds.),
High-Level Petri Nets: Theory and Application. Springer Verlag, Berlin, pp. 3-43.

12. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud. (1991) The synchronous data-flow
programming language LUSTRE. In Proceedings of the IEEE, volume 79, September
1991.

13. Hinckley, K., Czerwinski, M., Sinclair, M., Interaction and Modeling Techniques for
Desktop Two-Handed Input, ACM UIST'98 Symposium on User Interface Software
& Technology, pp. 49-58.

14. D. Navarre, P. Palanque, R. Bastide & O. Sy. Structuring Interactive Systems
Specifications for Executability and Prototypability. 7th Eurographics Workshop on
Design, Specification and Verification of Interactive Systems, DSV-IS'2000,
Limerick, Ireland, 2000, Lecture notes in Computer Science n° 1946.

15. OMG. The Common Object Request Broker: Architecture and Specification.
CORBA IIOP 2.2 /98-02-01, Framingham, MA (1998).

198 D. Navarre et al.

16. P. Palanque & A. Schyn. A Model-Based Approach for Engineering Multimodal
Interactive Systems in INTERACT 2003, IFIP TC 13 conference on Human
Computer Interaction.

17. R. Wieting 1996. Hybrid High-Level Nets . Page 848 855Proceedings of the 1996
Winter Simulation Conference. ACM Press.

18. J.S. Willans & Harrison M. D. Prototyping pre-implementation designs of virtual
environment behaviour. 8th IFIP Working conference on engineering for human-
computer interaction (EHCI'01) 2001. LNCS, Springer Verlag.

Discussion

[Rick Kazman] The context of this is safety critical systems. Two properties to
address are reliability and performance. How do you guarantee that in the model you
are presenting that these properties are there and, given that the model is
compositional, that the properties are preserved?

[Philippe Palanque] The intention is not to embed PetShop in an aircraft. The
model is intended to be a specification and a high-fidelity prototype. So we
produce a specification and a running example. On the aeroplane, for
example, it was necessary to have response within 20ms. This is met with
our system. We hope to provide a set of tests as well to allow the developers
to be sure that they have met the requirements. We are working on this now.

[Bonnie John] In the spirit of the grand challenge of the "UI crash test dummy", have
you thought of attaching this to a cognitive modeling architecture such as ACT-R
(which has its own model of human-like concurrency and human-scale timing?)

[Philippe Palanque] We work at a low level. So we use Fitts' Law for
example, to tell us that the average time for a user to respond will be some
value. Petri Nets allow time to be attributed to arcs and specification of the
size of buttons, which allow this kind of analysis.

[Michael Harrison] Petri nets have a lot of "good" baggage allowing you to prove
many properties of systems. You presented this tool primarily as a rapid prototyping
environment. Have you taken advantage of the properties of Petri nets for analysis?

[Philippe Palanque] There is a tradeoff in designing Petri nets for evaluation
vs prototyping. In the past we've worked on the modelling approach, but now
we're looking at expressiveness. We have performed analyses such as
invariant checking.

[Michael Harrison] Do you feel this is a good way of specifying this kind of system?

[Philippe Palanque] We have a contract with the French certification
authority. They have no idea of how to certify a cockpit. Now several people
at Thalès are using our tools to work on this.

[Willem-Paul Brinkman] Synchronization over feedback is also important as well as
synchronization of inputs. Do you handle this?

[Philippe Palanque] Our approach can handle the specification of the entire
system. We have seen this in practice. For example, in the A380, they have a

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts 199

server (X Windows). There is feedback indicating that the server has not yet
received feedback from the application, during which the pilot must wait.

[Grigori Evreinov] There was no clear definition of multi-modal. What is the
difference between multi-modal and multi-channel interaction? E.g., if you can
manipulate with two mice, it's two channel manipulation. If you have speech fused
with mouse motion, it's multi-modal. Content should not be fused in head of the user.

[Philippe Palanque] You are right. The example was multi-channel
interaction. The point was to show the integration of multiple devices. For
multi-modal, we can have models of two mice, which are fused via a single
model at the logical interaction level. This is perfectly possible with
PetShop. For example, using two fingers on a touch-sensitive display.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 200-220, 2005.
 IFIP International Federation for Information Processing 2005

USIXML: A Language Supporting Multi-path
Development of User Interfaces

Quentin Limbourg1, Jean Vanderdonckt1, Benjamin Michotte1, Laurent Bouillon1,
Víctor López-Jaquero1 2

1 Université catholique de Louvain, School of Management (IAG), ISYS-BCHI
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{limbourg,vanderdonckt,michotte,bouillon,lopez}@isys.ucl.ac.be
http://www.isys.ucl.ac.be/bchi

2 Laboratory of User Interaction and Software Engineering (LoUISE)
University of Castilla-La Mancha, Albacete, Spain

victor@info-ab.uclm.es

Abstract. USer Interface eXtensible Markup Language (USIXML) consists in a
User Interface Description Language (UIDL) allowing designers to apply a
multi-path development of user interfaces. In this development paradigm, a user
interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these
levels if required. Thus, the development process can be initiated from any level
of abstraction and proceed towards obtaining one or many final user interfaces
for various contexts of use at other levels of abstraction. In this way, the model-
to-model transformation, which is the cornerstone of Model-Driven
Architecture (MDA), can be supported in multiple configurations, based on
composition of three basic transformation types: abstraction, reification, and
translation.

Keywords: context-sensitive user interface, development processes, modality
independence, model-driven architecture, model-to-model transformation,
multi-path development, rendering independence, user interface description
language.

1 Introduction

Due to the rapid changes of today’s organisations and their business, many
information systems departments face the problem of quickly adapting the user
interface (UI) of their interactive applications to these changes. These changes
include, but are not limited to: task redefinition [4], task reallocation among workers
[4], support of new computing platforms [10], migration from stationary platforms to
mobile computing [17], evolution of users with more demands, increasing need for
more usable UIs, transfer of tasks from one user to another one [7], redefinition of the
organisation structure, adaptation to dynamic environments [16], changes in the
language, redesign due to obsolescence [3], evolution of the domain model [1]. All
these changes change to some extent the context of use, which is hereby referred to as

USIXML: A Language Supporting Multi-path Development of User Interfaces 201

the complete environment where final users have to carry out their interactive tasks to
fulfil the roles they are playing in their organisations.

To address the challenges posed by these changes, the development processes used
in these organisations are not always considered appropriate, as they do not reflect the
implication of any change throughout the complete development life cycle. As a
matter of fact, organisations react to changes in very different ways in their UI
development processes. For instance, one organisation starts by recovering existing
input/output screens, by redrawing them and by completing the functional core when
the new UI is validated by the customer (bottom-up approach). Another organisation
prefers modifying the domain model (e.g., a UML class diagram [12]) and the task
model [20] to be mapped further to screen design (top-down approach). A third one
tends to apply in parallel all the required adaptations where they occur (wide
spreading approach). A fourth one relies on an intermediate model and proceeds
simultaneously to the task and domain models, and the final UI (middle-out
approach) [15]. The UI development process has also been empirically observed as
an ill-defined, incomplete, and incremental process [24] that is not well supported by
rigid development methods and tools. Such methods and tools usually force
developers to act in a way that remains peculiar to the method. The tool does not
allow for more flexibility. For instance, SEGUIA [25] only supports a single fixed UI
development path [11].

The variety of the approaches adopted in organisations and the rigidity of existing
solutions provide ample motivations for a UI development paradigm that is flexible
enough to accommodate multiple development paths and design situations while
staying precise enough to manipulate information required for UI development. To
overcome these shortcomings, the development paradigm of multi-path UI
development is introduced that is characterised by the following principles:

 Expressiveness of UI: any UI is expressed depending on the context of use

thanks to a suite of models [20] analysable, editable, and manipulable by a
software [21].

 Central storage of models: each model is stored in a model repository where
all UI models are expressed according to the same UI Description Language
(UIDL).

 Transformational approach: each model stored in the model repository may
be subject to one or many transformations supporting various development
steps.

 Multiple development path: development steps can be combined together to
form developments path that are compatible with the organisation’s
constraints, conventions, and context of use. For example, a series of
transformations should be applied to progressively move from a task model to
a dialog model, to recover a domain model from a presentation model, to
derive a presentation model from both the task and domain models.

 Flexible development approaches: development approaches (e.g., top-down,
bottom-up, wide spreading, and middle-out) are supported by flexibly
following alternate development path and enabling designers to freely shift
between these paths depending on the changes imposed by the organization
[15].

202 Q. Limbourg et al.

The remainder of this paper is structured as follows: Section 2 reports on some
significant pieces of work that are partially related to multi-path UI development.
Section 3 introduces the reference representations used throughout this paper to
address the principles of expressiveness and central storage of models based on USer
Interface eXtensible Markup Language (USIXML). Section 4 shows how a
transformational approach is represented and implemented thanks to graph grammars
and graph transformations applied on models expressed in USIXML and stored in a
model repository. Three basic transformation types (i.e., abstraction, reification, and
translation) are exemplified. Section 6 exposes the tool support proposed around
USIXML. Section 7 concludes by reporting on the main benefits and difficulties
encountered so far with multi-path UI development.

2 Related Work

The multi-path UI development, as defined in Section 1, is at the intersection of two
mainstreams of research and development: on the one hand, UI modelling and design
of multi-platform UIs represent significant advances in Human-Computer Interaction
(HCI) and on the other hand, program transformation that is considered promising in
Software Engineering (SE) as a mean to bridge the gap between abstract description
of software artefacts and their implementation [4,23].

Teallach tool and method [11] exploit three models: a task model, a domain model
as a class diagram, and a presentation model both at logical and physical levels.
Teallach enables designers to start building a UI from any model and maps concepts
from different models one to each other (e.g., map a widget to a domain concept, or
map a task onto a domain concept). Teallach also provides rules to derive model
elements using information contained in another model.

XWEB [25] produces UIs for several devices starting from a multi-modal
description of the abstract UI. This system operates on specific XWEB servers and
browsers tuned to the interactive capacities of particular platforms, which
communicate thanks to an appropriate XTP protocol. MORE [10] produces
applications that are platform independent by relying on Platform Independent
Application (PIA). A PIA can be created either by a design tool or by abstracting a
concrete UI by a generalization process done by reverse engineering [17] the UI code.

UIML consists of a UIDL supporting the development of UIs for multiple
computing platforms by introducing a description that is platform-independent to be
further expanded with peers once a target platform has been chosen [2]. The TIDE tool
[2] transforms a basic task model into a final UI. XIML [21] is a more general UIDL
than UIML as it can specify any type of model, any model element, and relationships
between them. Although some predefined models and relationships exist, one can
expand the existing set to fit a particular context of use. XIML has been used in
MANNA for platform adaptation [9], and in VAQUITA and Envir3D [5] to support re-
engineering [7] of web sites by applying a series of model transformations.
SeescoaXML [21] is the base UIDL exploited in the SEESCOA project to support the
production of UIs for multiple platforms and the run-time migration of the full UI
across these platforms.

USIXML: A Language Supporting Multi-path Development of User Interfaces 203

TERESA (Transformation Environment for inteRactivE Systems representAtions)
[17] produces different UIs for multiple computing platforms by refining a general
task model for the different platforms. Then, various presentation and dialogue
techniques are used to map the refinenements into XHTML code adapted for each
platform, such as Web, PocketPC, and mobile phones. TERESA exploits TERESAXML,
a UIDL that supports several types of transformations such as: task model into
presentation task sets, task model into abstract UI, abstract UI to concrete UI, and
generation of the final UI. In [26], a very interesting example of a platform modulator
[9] is provided that maps a hierarchical task model to a presentation model explicitly
taking into account platform characteristics such as screen resolution.

The above pieces of work all represent an instance with some degree of coverage
and restrictions of the multi-path UI development. Regarding the UI expressiveness
for multiple contexts of use, XTP of XWeb, UIML, XIML, TERESAXML and
SeescoaXML are UIDLs that address the basic requirements of UI modelling and
expressivity. XIML is probably the most expressive one as a new model, element or
relationship can be defined internally. Yet, there is no systematic support of these
relationships until they are covered by specific software. Regarding the
transformational approach, Seescoa, Teallach, TERESA and TIDE include some
transformation mechanism to map a model onto another one, but the logics and the
definition of transformation rules are completely hard coded with little or no control
by designers. In addition, the definition of these representations is not independent of
the transformation engine. Regarding multiple development path, only Teallach
explicitly addresses the problem, as models can be mapped one onto another
according to different ways. Other typically apply top-down (e.g., TIDE), bottom-up
(e.g., VAQUITA), middle-out (e.g., MIDAS [15]), but none of them support all
development approaches.

To satisfy the requirements subsumed by the four principles, Graph
Transformation (GT) [22] will be applied because substantive experience shows
applicability in numerous fields of science (e.g., biology, operational research) and,
notably, to computer science (e.g., model checking, parallel computing, software
engineering). GTs are operated in two steps: expressing abstract concepts in the form
of a graph structure and defining operations producing relevant transformations on the
graph structure. Sucrow [23] used GT techniques to formally describe UI dialog with
dialog states (the appearance of a UI at a particular moment in time) and dialog
transitions (transformations of dialog states). An interesting edge typology is
proposed to describe dialog states, emphasises, widget hierarchy, semantic feedback,
and relationships with the functional core of the application. To support “a continuous
specification process of graphical UIs”, two models are defined in the development
process: abstract and concrete. GTs map one model into another, and vice versa, thus
leading to reversibility. Furthermore, elements such as dialog patterns, style guides,
and metaphors are used to automate abstract to concrete transition. However,
conceptual coverage and fundamental aspects of this work remains silent: presented
concepts remain at the model level without going to any final UI and there is no
description of the meta-level or of the instance level. To structure the models involved
in the UI development process and to characterise the model transformations to be
expressed through GT techniques, a reference framework is now introduced.

204 Q. Limbourg et al.

3 The Reference Framework Used for Multi-path
UI Development

Multi-path UI development is based on the Cameleon Reference Framework [6],
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to
manipulate any specific artefact of interest as a model or a UI representation) [5,6]:

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular computing

platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive development environment).

2. Concrete UI (CUI): concretises an abstract UI for a given context of use into
Concrete Interaction Objects (CIOs) [25] so as to define widgets layout and
interface navigation. It abstracts a FUI into a UI definition that is independent of
any computing platform. Although a CUI makes explicit the final Look & Feel of
a FUI, it is still a mock-up that runs only within a particular environment. A CUI
can also be considered as a reification of an AUI at the upper level and an
abstraction of the FUI with respect to the platform.

3. Abstract UI (AUI): defines interaction spaces (or presentation units) by grouping
subtasks according to various criteria (e.g., task model structural patterns,
cognitive load analysis, semantic relationships identification), a navigation scheme
between the interaction spaces and selects Abstract Interaction Objects (AIOs)
[25] for each concept so that they are independent of any modality. An AUI
abstracts a CUI into a UI definition that is independent of any modality of
interaction (e.g., graphical interaction, vocal interaction, speech synthesis and
recognition, video-based interaction, virtual, augmented or mixed reality). An AUI
can also be considered as a canonical expression of the rendering of the domain
concepts and tasks in a way that is independent from any modality of interaction.
For example, in ARTStudio [5], an AUI is a collection of related workspaces. The
relations between the workspaces are inferred from the task relationships
expressed at the upper level (task and concepts). An AUI is considered as an
abstraction of a CUI with respect to modality.

4. Task & Concepts (T&C): describe the various tasks to be carried out and the
domain-oriented concepts as they are required by these tasks to be performed.
These objects are considered as instances of classes representing the concepts
manipulated.

This framework exhibits three types of basic transformation types: (1,2)

Abstraction (respectively, Reification) is a process of elicitation of artefacts that are
more abstract (respectively, concrete) than the artefacts that serve as input to this
process. Abstraction is the opposite of reification. (3) Translation is a process that
elicits artefacts intended for a particular context of use from artefacts of a similar
development step but aimed at a different context of use. With respect to this
framework, multi-path UI development refers to a UI engineering method and
tool that enables a designer to (1) start a development activity from any entry point
of the reference framework (Fig. 1), (2) get substantial support in the performance of

USIXML: A Language Supporting Multi-path Development of User Interfaces 205

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Task & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction
Fig. 1. The Cameleon Reference Framework.

all basic transformation types and their combinations of Fig. 1. To enable such a
development, the two most important requirements gathered from observations are:

1. A language that enables the expression and the manipulation (e.g., creation,

modification, deletion) of the model at each development steps and for each
context of use. For this purpose, USIXML is introduced and defined
(http://www.usixml.org). It is out of the scope of this paper to provide an
extensive discussion on the content of USIXML. USIXML is composed of
approximately 150 concepts enabling the expression of different levels of
abstraction as introduced in Fig. 1.

2. A mechanism to express design knowledge that would provide a substantial
support to the designer in the realisation of transformations. For this purpose, a
GT technique is introduced and defined based on USIXML.

4 Graph Transformation Specification with USIXML

Graph transformation techniques were chosen to formalize USIXML, the language
designed to support multi-path UI development, because it is (1) Visual: every
element within a GT based language has a graphical syntax; (2) Formal: GT is based
on a sound mathematical formalism (algebraic definition of graphs and category
theory) and enables verifying formal properties on represented artefacts; (3)
Seamless: it allows representing manipulated artefacts and rules within a single
formalism. Furthermore, the formalism applies equally to all levels of abstraction of
USIXML (Fig. 2). USIXML model collection is structured according to the four basic
levels of abstraction defined in the Cameleon Reference Framework that is intended
to express the UI development life cycle for context-sensitive interactive applications.
Fig. 2 illustrates more concretely the type of concepts populating each level of
Cameleon reference framework:
 At the FUI level, the rendering materialises how a particular UI coded in one

language (markup, programming or declarative) is rendered depending on the UI
toolkit, the window manager and the presentation manager. For example, a push

206 Q. Limbourg et al.

button programmed in HTML at the code sub-level can be rendered differently,
here on MacOS X and Java Swing. Therefore, the code sub-level is materialised
onto the rendering sub-level.

 The CUI level is assumed to abstract the FUI independently of any computing
platform, this level can be further decomposed into two sub-levels: platform-
independent CIO and CIO type. For example, a HTML push-button belongs to the
type “Graphical 2D push button”. Other members of this category include a
Windows push button and XmButton, the OSF/Motif counterpart.

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Fig. 2. Example of transformations in USIXML.

 Since the AUI level is assumed to abstract the CUI independently of any modality
of interaction, this level can be further decomposed into two sub-levels: modality-
independent AIO and AIO type. For example, a software control (whether in 2D
or in 3D) and a physical control (e.g., a physical button on a control panel or a
function key) both belong to the category of control AIO.

 At the T&C level, a task of a certain type (here, download a file) is specified that
naturally leads to AIO for controlling the downloading.

Thanks to the four abstraction levels, it is possible to establish mappings between
instances and objects found at the different levels and to develop transformations that
find abstractions or reifications or combinations. For example, if a Graphical User
Interface (GUI) needs to be virtualised, a series of abstractions is applied until the
sub-level “Software control AIO” sub-level is reached. Then, a series of reifications
can be applied to come back to the FUI level to find out another object satisfying the
same constraints, but in 3D. If the GUI needs to be transformed for a UI for
augmented reality for instance, the next sub-level can be reached with an additional
abstraction and so forth. The combinations of the transformations allow establishing
development path. Here, some first examples are given of multi-path UI development.
To face multi-path development of UIs in general, USIXML is equipped with a
collection of basic UI models (i.e., domain model, task model, AUI model, CUI model,
context model and mapping model) (Fig. 4) and a so-called transformation model
(Fig. 3) [13]. Beyond the AUI and CUI models that reflect the AUI and CUI levels,
the other UI models are defined as follows:

USIXML: A Language Supporting Multi-path Development of User Interfaces 207

Fig. 3. USIXML Model Collection.

 uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
in any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A user interface
model needs not include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

 taskModel (Inherits from: uiModel): is a model describing the interactive task as
viewed by the end user interacting with the system. A task model represents a
decomposition of tasks into sub-tasks linked with task relationships. Therefore, the
decomposition relationship is the privileged relationship to express this hierarchy,
while temporal relationships express the temporal constraints between sub-tasks of
a same parent task. A task model is here expressed according to the
ConcurTaskTree notation [20].

 domainModel (Inherits from: uiModel): is a description of the classes of objects
manipulated by a user while interacting with a system [12].

 mappingModel (Inherits from: uiModel): is a model containing a series of related
mappings (i.e, a declaration of an inter-model relationship) between models or
elements of models. A mapping model serves to gather a set of inter-model
relationships that are semantically related.

 contextModel (Inherits from: uiModel): is a model describing the three aspects of
a context of use in which a end user is carrying out an interactive task with a
specific computing platform in a given surrounding environment. Consequently, a
context model consists of a user model, a platform model, and an environment
model.

Transformations are specified using transformation systems. Transformation
systems rely on the theory of graph grammars [22]. We first explain what a
transformation system is and then illustrate how they may be used to specify UI
model transformations. The proposed formalism to represent model-to-model
transformation in USIXML is graph transformations. This formalism has been
discussed in [13,14]. USIXML has been designed with an underlying graph structure.
Consequently any graph transformation rule can be applied to a USIXML
specification. Graph transformations have been shown convenient and efficient for
our present purpose in [19].

208 Q. Limbourg et al.

Fig. 4. Transformation model as defined in USIXML.

A transformation system is composed of several transformation rules. Technically,
a rule is a graph rewriting rule equipped with negative application conditions and
attribute conditions [19].

Fig. 5 illustrates how a transformation system applies to a USIXML specification:
let G be a USIXML specification (represented as a graph), when 1) a Left Hand Side
(LHS) matches into G and 2) a Negative Application Condition (NAC) does not
matches into G (note that several NAC may be associated with a single rule) 3) the
LHS is replaced by a Right Hand Side (RHS). G is resultantly transformed into G, a
resultant USIXML specification. All elements of G not covered by the match are
considered as unchanged. All elements contained in the LHS and not contained in the
RHS are considered as deleted (i.e., rules have destructive power). To add more
expressive power to transformation rules, variables may be associated to attributes
within a LHS. Theses variables are initialized in the LHS and their value can be used
to assign an attribute in the expression of the RHS (e.g., LHS : button.name:=x, RHS :
task.name:=x). An expression may also be defined to compare a variable declared in
the LHS with a constant or with another variable. This mechanism is called ‘attribute
condition’.

USIXML: A Language Supporting Multi-path Development of User Interfaces 209

Fig. 5. Transformation system in USIXML.

We detail hereafter a simplified scenario illustrating the three basic types of
transformation (thus inducing different path) mentioned in Section 3.

Step 1 (Abstraction): a designer reverse engineers an HTML page with Rutabaga
[3] in order to obtain a CUI model. Transformation 1 (Fig. 6) is an abstraction that
takes a button at the concrete level and abstracts it away into an abstract interaction
object. The LHS selects every button and the method they activate and create a
corresponding abstract interaction object equipped with a control facet mapped onto
the method triggered by its corresponding concrete interaction object. Some
behavioural specification is preserved at the abstract level. Note that behaviour
specification in USIXML is also done with graph transformations rules. It is out of the
scope of this paper to explicit this mechanism. This is why rule 1 in transformation 1,
in its LHS, embeds a fragment of a transformation system specification. This may
seem confusing at first sight but is very powerful at the end i.e., we dispose of a
mechanism transforming a UI behavioural specification into another one! In the RHS,
one also see that a relationship isAbstractedInto has been created. This relationship
ensures traceability of rule application and helps in maintaining coherence among
different levels of abstraction.

Step 2 (Reification): the designer decides to add, by hand, to the abstract level a
navigation facet to every abstract interaction object that has a control facet. From this
new abstract specification, Transformation 2 (Fig. 7) reifies every abstract interaction
object into image components (i.e., a type of concrete interaction object). By default,
the control facet is activated when an event “onMouseOver” is triggered, and the
navigation facet is activated when the imageComponent is double-clicked. This rule
may of course be customized by the designer to reflect his own preferences or needs.

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2
…

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2
…

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

210 Q. Limbourg et al.

Transformation 1: abstraction

...
<abstraction id="AB1" name =
"AbstractButtonWithControl" description = "this
translation abstracts buttons into an AIO with an
activation facet"

<transformationSystem id = "TR2" name="Transfo2"...>
<transformationRule id = "rule1" name "abstractsBut">

<lhs>

<button ruleSpecificID="1" mapID="2">
<behavior>
<action>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3"
 mapID ="4" name=”X” />
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</action>
</behaviour>

</button>
</lhs>

<rhs>

<abstractIndividualComponent ruleSpecificId="5">
<control activatedMethod=”X”>

</abstractIndividualComponent>

<isAbstractedInto>

<source sourceId="2"/>
<target targetId="5"/>

<isAbstractedInto>

<button ruleSpecificId="1" mapID="2">

<behavior>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3" mapID ="4"/>
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</button>
</rhs>
...
<nac.../>

</transformationRule>
</transformationSystem>
</abstraction>
...

Transformation 2: reification

...
<reification id="Reif1" name = "ReifiesAioImgCtlrNav”
 description = " reifies a control AIO into an image
Component with corresponding behavior template”

<transformationSystem id = "TRE1" name="TR2"...>
<transformationRule id = "rule44" name

"ReiFControl44">

<lhs>

<abstractIndividualComponent mapID="1">
<control activatedMethod=”X”/>
<navigation target=”Y”/>
</abstractIndividualComponent>

<lhs>
<rhs>

<imageComponent ruleSpecificID="2">
<behavior>
<event type="doubleClick"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<method ruleSpecificID="3" name=”X”/>
<isTriggeredBy isFired="true">
<source sourceId="2">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>
<behavior>
<event type="onMouseOver(self)"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<graphicalContainer id="Y" visible="true"/>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</imageComponent>

<isReifiedInto>

<source sourceId="1"/>
<target targetId="2"/>

</isReifiedInto>

<abstractIndividualComponent mapID="1">

<control activatedMethod="X">
</abstractIndividualComponent>

</rhs>
<nac.../>

<transformationRule>
</transformationSystem>
</reification>
...

Fig. 6. Transformation 1. Fig. 7. Transformation 2.

Step3 (Translation): to adapt a UI to a new type of display/browser that has the

characteristic to be tall and narrow. The designer decides then to apply
Transformation 3 (Fig. 8) to her CUI model. This transformation is made of a rule that
selects all boxes (basic layout structure at the CUI level) and sets these boxes type to
“vertical”. All widgets contained in this box are then glued to the left of the box
(again in the idea of minimizing the width of the resulting UI). Note the presence of a

USIXML: A Language Supporting Multi-path Development of User Interfaces 211

negative application condition (too long to show in previous examples) that ensures
that rule 1 in transformation 3 is not applied to an already formatted box.

Fig. 8 shows a simple example of translation specified with USIXML. This rule of
the rule selects all boxes (basic layout structure at the CUI level), sets these boxes to
“vertical”. All widgets contained in this box are then glued to the left of the box
(again in the idea of minimizing the width of the resulting UI). A negative application
condition ensures that a rule is not applied to an already formatted box.

Transformation 3: translation

...

<translation id="TL1" name="squeezeDisplay"

description= "this translations vertically aligns all widgets of a

container">

<sourceModel type="cui"/>

<targetModel type="cui"/>

<transformationSystem id="TR1" name="Transfo1"...>

<transformationRule id="rule1" name="squeeze1">

<lhs>

<box mapID="1">

<graphicalIndividualComponent mapId="2" />

</box>

</lhs>

<rhs>

<box mapID="1" type="vertical">

<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>

</box>

</rhs>

<nac>

212 Q. Limbourg et al.

<box mapID="1" type="vertical">

<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>

</nac>

</transformationRule>

</transformationSystem>

</translation>

...

Fig. 8. Transformation 3.

Alternatively to textual representation, transformation rules are easily expressed in
a graphical syntax. Fig. 9 shows a graphical equivalent for the rule contained in Fig.
8. A general purpose tool for graph transformation called AGG (Attributed Graph
Grammars) was used to specify this example. There is no proof that states the
superiority of graphical formalism over textual ones, but at least USIXML designer
can choose between both.

LHSNAC RHS

::=

LHSNAC RHS

::=

Fig. 9. Graphical representation of the transformation.

Traceability (and as a side-effect reversibility) of model transformation is enabled
thanks to a set of ‘so-called’ interModelMappings (e.g., isAbstractedInto,
IsReifiedInto, isTranslatedInto) allowing a relation between model elements
belonging to different models. Thus, it is possible to keep a trace of the application of
rules i.e., when a new element is created a mapping indicates of what element it is an
abstraction, a reification, a translation, etc. Another advantage of using these
mappings is to support multi-path development is that they explicitly connect the
various levels of our framework and realizes an seamless integration of the different
models used to describe the system. Knowing the mappings of a model increases
dramatically the understanding of the underlying structure of a UI. It enables to
answer, at no cost, to question like: what task an interaction object enables?, what
domain object attributes are updated by what interaction object? Which interaction
object triggers what method?

USIXML: A Language Supporting Multi-path Development of User Interfaces 213

5 Tool Support

Tool support is provided for several of the levels shown in Fig. 2.
 Reverse engineering of UI code: a specific tool, called Rutabaga [3],

automatically reverse engineers the presentation model of an existing HTML Web
page at both the CUI and AUI levels, with or without intra-model, inter-model
mappings. This tool allows developers to recuperate an existing UI so as to
incorporate it again in the development process. In this case, a re-engineering can
be obtained by combining two abstractions, one translation, and two reifications.
This is particularly useful for evolution of legacy systems.

 Model edition: as editing a new UI in USIXML directly can be considered as a
tedious task, a specific editor called GrafiXML has been developed to face the
development of USIXML models. Being at first hand a textual language, an ad
hoc USIXML editor was created. In this editor, the designer can draw in direct
manipulation any graphical UI by directly placing CIOs and editing their
properties in the Composer, which are instantly reflected in the UI design (Fig.
10). At any time, the designer may want to see the corresponding USIXML
specifications (Fig. 11) and edit it. Selecting a USIXML tag automatically
displays possible values for this tag in a contextual menu. When the tag or the
elements are modified, those changes are propagated to the graphical
representation. In this way, a bidirectional mapping is maintained between a UI
and its USIXML specification: each time a part is modified, the other one is
updated accordingly.

Fig. 10. Graphical Editing of a UI in GrafiXML.

214 Q. Limbourg et al.

Fig. 11. USIXML equivalent of a UI edited in GrafiXML.

Fig. 12. Capabilities to generate a UI at different levels of abstraction.

What distinguishes GrafiXML from other UI graphical editors are its capabilities
to directly generate USIXML specifications at the different levels of abstractions
represented in Fig. 2: FUI (here in plain text, in XHTML and Java AWT), CUI
(with or without relationships), and AUI (with or without relationships). In
addition, a UI can be saved simultaneously with CUI and AUI specifications,
while establishing and maintaining the inter-model relationships between.

 Transformation specification and application: an environment called AGG
(Attributed Graph Grammars tool) is used for this experiment. AGG can be
considered as a genuine programming environment based on graph
transformations [12]. It provides 1) a programming language enabling the
specification of graph grammars 2) a customizable interpreter enabling graph
transformations. AGG was chosen because it allows the graphical expression of
directed, typed and attributed graphs (for expressing specifications and rules). It

USIXML: A Language Supporting Multi-path Development of User Interfaces 215

has a powerful library containing notably algorithms for graph transformation
[14], critical pair analysis, consistency checking, positive and negative application
condition enforcement. AGG user interface is described in Fig. 13. Frame 1 is the
grammar explorer. Fig. 13 Frames 2, 3 and 4 enable to specify sub-graphs
composing a production: a negative application (frame 2), a left hand side (frame
3) and a right hand side (frame 4). The host graph on which a production will be
applied is represented in Frame 5.

 A tool for transformation application: several Application Programming
Interfaces are available to perform model-to-model transformations (e.g., DMOF
at http://www.dstc.edu.au/Products/CORBA/M-OF/ or Univers@lis at
http://universalis. elibel.tm.fr/site/). We tested AGG API as this API proposes to
transform models with as graph transformations. This scenario is described in Fig.
14. An initial model along with a set of rules are transmitted to a Application
Programming Interface that performs appropriate model transformations and
provide a resulting model that can be edited.

Fig. 13. AGG user interface.

216 Q. Limbourg et al.

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

Fig. 14. Development process based on transformation application.

6 Conclusion

Information systems are subject to a constant pressure toward change. UIs represent
an important and expensive software component of information systems. Multi-path
UI development has been proposed to cope with the problem of UI adaptation to an
evolving context of use. Multi-path UI development has been defined as an
engineering method and tool that allows a designer to start a UI development by
several entry points in the development cycle, and from this entry point get a
substantial support to build a high quality UI. Main features of multi-path UI
development are:

1. A flexible development process based on transformations.
2. A unique formal language to specify UI related artefacts. So far, these

concepts have been hard coded in software tools, thus preventing anyone from
reusing, redefining or exchanging them. USIXML provides a mean to
overcome these shortcomings. The core of this language is composed of a set
of integrated models expressed in a formal and uniform format, governed by a
common meta-model definition, graphically expressible and a modular,
modifiable and extensible repository of executable design knowledge that is
also represented with a graphical syntax. Furthermore, a definition of an XML
notation supporting the exchange of models and executable design knowledge
has been presented.

3. A transformational approach based on systematic rules that guarantee semantic
equivalence when applied, some of them being reversible.

4. A tool supporting the expression and manipulation of models and design
knowledge visually.

With increase of design experience, a copious catalogue of transformation rules
can be assembled into meaningful grammars. The level of support provided to the
accomplishment of design steps varies from one transition to another. Indeed, some

USIXML: A Language Supporting Multi-path Development of User Interfaces 217

transitions are better known than others. For instance, the reification between physical
and logical UI can be supported by hundreds of rules namely by widget selection
rules. On the contrary, rules that enable the translation of a task model from a desktop
PC to a handheld PC are, for now, understudied. Some transitions are intrinsically
harder to support (e.g., abstraction transitions). For instance, retrieving a task model
from the physical UI is not a trivial problem.

Acknowledgements

The authors would like to thank Cameleon partners who contributed to V1.2 of
USIXML: Lionel Balme, Gaëlle Calvary, Cristina Chesta, Alexandre Demeure, Joëlle
Coutaz, Jean-Thierry Lechein, Fabio Paternò, Stéphane Raymond, Carmen Santoro,
and Youri Vanden Berghe. This paper is related to USIXML V1.4, an extension of
USIXML V1.2 with dialog model, more inter-model mappings, a context model made
up of user, platform, and environment, and the concrete user interface level. Laurent
Bouillon is supported by Cameleon research project (http://giove.cnuce.cnr.it/
cameleon.html) under the umbrella of the European Fifth Framework Programme
(FP5-2000-IST2). Benjamin Michotte is supported by the SIMILAR network of
excellence (http://www.similar.cc), the European research task force creating human-
machine interfaces similar to human-human communication of the European Sixth
Framework Programme (FP6-2002-IST1-507609).

References

1. Agrawal, A., Karsai, G., Ledeczi, K.: An End-to-end Domain-Driven Software
Development Framework. In: Companion of the 18th Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications OOPSLA’2003
(Anaheim, October 26-30, 2003). ACM Press, New York (2003) 8–15

2. Ali, M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

3. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, January 13-
16, 2004). ACM Press, New York (2004) 132–139

4. Brown J.: Exploring Human-Computer Interaction and Software Engineering
Methodologies for the Creation of Interactive Software. SIGCHI Bulletin 29,1 (1997) 32–
35

5. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the
Development of Plastic User Interfaces. In: Little, M.R., Nigay, L. (eds.): Proc. of IFIP
WG2.7 (13.2) Working Conference EHCI’2001 (Toronto, May 11-13, 2001). Lecture
Notes in Computer Science, Vol. 2254. Springer-Verlag, Berlin (2001) 173–192

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers 15,3 (2003) 289–308

7. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 1,7 (1990) 13–17

218 Q. Limbourg et al.

8. Constantine, L.: Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
In: Jorge, J., Nunes, N.J., Falcão e Cunha, J. (eds.), Proc. of 10th Int. Workshop on Design,
Specification, and Verification of Interactive Systems DSVIS’2003 (Funchal, June 4-6,
2003). Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin (2003) 1–9

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Lester, J. (ed.), Proc. of 5th ACM Int. Conf. on
Intelligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New
York (2001) 69–76

10. Gaeremynck, Y., Bergman, L.D., Lau, T.: MORE for Less: Model Recovery from Visual
Interfaces for Multi-Device Application Design. In: Proc. of 7th ACM Int. Conf. on
Intelligent User Interfaces IUI’2003 (Miami, January 12-15, 2003). ACM Press, New York
(2003) 69–76

11. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C.A., da Silva, P.P.: Teallach: A Model-Based User Interface Development
Environment for Object Databases. Interacting with Computers 14, 1 (December 2001) 31–
68

12. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall, Englewood Cliffs (2001)

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, B.: TOMATOXML, a General
Purpose XML Compliant User Interface Description Language, TOMATOXML V1.2.0.
Working Paper n°105. Institut d’Administration et de Gestion (IAG), Louvain-la-Neuve (19
February 2004).

14. Limbourg, Q., Vanderdonckt, J.: Transformational Development of User Interfaces with
Graph Transformations. In: Jacob, R., Limbourg, Q., Vanderdonckt, J. (eds.): Proc. of 5th
Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2004 (Madeira, January
14-16, 2004). Kluwer Academics Pub., Dordrecht (2004)

15. Luo, P.: A Human-Computer Collaboration Paradgim for Bridging Besign
Conceptualization and Implementation. In: F. Paternò (ed.): Interactive Systems: Design,
Specification, and Verification, Proc. of the 1st Eurographics Workshop on Design,
Specification, and Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, June 8-
10, 1994). Springer-Verlag, Berlin (1995) 129–147

16. Luyten, K., Van Laerhoven, T., Coninx, K., Van Reeth, F.: Runtime Transformations for
Modal Independent User Interface Migration. Interacting with Computers 15,3 (2003) 329–
347

17. Mori, G., Paternò, F., Santoro, C.: Tool Support for Designing Nomadic Applications. In:
Proc. of 7th ACM Int. Conf. on Intelligent User Interfaces IUI’2003 (Miami, January 12-15,
2003). ACM Press, New York (2003)141–148

18. Olsen, D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P.: Cross Modal Interaction
using XWEB. In: Proc. of the 13th Annual ACM Symposium on User Interface Software
and Technology UIST’2000 (San Diego, November 5-8, 2000). ACM Press, New York
(2000) 191–200

19. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Computing Surveys
15,3 (September 1983), 199–236

20. Paternò, F. Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, Berlin (2000)

21. Puerta, A., Eisenstein, J.: Developing a Multiple User Interface Representation Framework
for Industry. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

22. Rozenberg, G. (ed.). Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore (1997)

23. Sucrow, B.: On Integrating Software-Ergonomic Aspects in the Specification Process of
Graphical User Interfaces. Transactions of the SDPS Journal of Integrated Design &
Process Science. Society for Design & Process Science 2,2 (June 1998) 32–42

USIXML: A Language Supporting Multi-path Development of User Interfaces 219

24. Sumner, T., Bonnardel, N., Kallak, B.H.: The Cognitive Ergonomics of Knowledge-Based
Design Support Systems PAPERS: Intelligent Support. In: Proceedings of ACM
Conference on Human Factors in Computing Systems CHI’97 (Atlanta, April 1997). ACM
Press, New York (1997) 83–90

25. Vanderdonckt, J., Berquin, P.: Towards a Very Large Model-Based Approach for User
Interface Development. In: Paton, N.W., Griffiths, T. (eds.): Proc. of 1st IEEE Int.
Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edinburgh, September
5-6, 1999). IEEE Computer Society Press, Los Alamitos (1999) 76–85

26. Wong, C., Chu, H.H., Katagiri, M.A., Single-Authoring Technique for Building Device-
Independent Presentations. In: Proc. of W3C Workshop on Device Independent Authoring
Techniques (St. Leon-Rot, 15-26 September 2002), accessible at http://www.w3.org/2002/
07/DIAT/posn/docomo.pdf

Discussion

[Stephen Gilroy] USIXML is an instantiation of your particular graph. Do you think
USIXML has sufficient expressiveness to represent all the aspects of your graph?

[Victor Jaquero] Yes USIXML is a raw transcript from our graph structure to
an XML-like syntax. USIXML has been designed to overcome the intrinsic
tree-like structure of XML languages. Like other language (e.g., GXL),
USIXML allows to define a real graph structure with nodes and edges. So, as
soon as a concept is defined in our conceptual graphs it is transposable into
USIXML.

[Stephen Gilroy] Is USIXML extensible?

[Victor Jaquero] At the model level USIXML allows to define any kind of
model. In this sense it is possible to instantiate new context models, new
domain models,...At meta-model level USIXML offers a modular structure
which clearly segregates the models it describes (these models being
integrated with inter-model relationships). Consequently, integrating new
models in USIXML is facilitated. The model and its concept is simply
declared along with the relationships that integrates this newcomer with
existing models. Rules exploiting this new model can be defined afterward.
Another point of extensibility is inside existing models themselves. In the
concrete user interface models for instance node types relevant to different
modalities (e.g., 2-D graphic and vocal) are clearly differentiated in
separated sub-trees. The introduction of a new modality, for instance, would
consist in introducing a new sub-tree into the node classification.

[Peter Forbrig] Is the idea to transform the model interactively, or is there a set of pre-
defined rules?

[Victor Jaquero] There is an editor for rules (AGG) that allows them to be
created for the particular application, as well as re-using existing rules (these
rules have been defined for our case studies).

220 Q. Limbourg et al.

[Michael Harrison] So are the rules applied interactively, or does the system specify
how to apply them?

[Victor Jaquero] The application of the rules may depend on different types
of scenarios, they can be applied blindly (with no user control), or step by
step with undo facilities. TransformiXML GUI enables also to define
alternate transformation systems for a same development step, it is also
possible modify the application order of rules populating a transformation
system.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 221-223, 2005.
 IFIP International Federation for Information Processing 2005

A Novel Dialog Model for the Design of Multimodal User
Interfaces

Robbie Schaefer, Steffen Bleul, Wolfgang Mueller

Paderborn University, Fuerstenallee 11,
33102 Paderborn, Germany

robbie@c-lab.de, bleul@upb.de, wolfgang@c-lab.de

Abstract. Variation in different mobile devices with different capabilities and
interaction modalities as well as changing user context in nomadic applications,
poses huge challenges to the design of user interfaces. To avoid multiple
designs for each device or modality, it is almost a must to employ a model-
based approach. In this short paper, we present a new dialog model for
multimodal interaction together with an advanced control model, which can
either be used for direct modeling by an interface designer or in conjunction
with higher level models.

1 Introduction and Related Work

Most natural human computer interaction can be achieved by providing the right user
interface for the right situation, which also implies selecting an adequate device
together with one or several interaction modalities. For this approach, any available
input or output device with their respective modalities can be used, which requires a
framework to synchronize the interaction as, e.g., presented with W3Cs Multimodal
Interaction Framework [1].
These environments can be considered to be highly dynamical with the consequence
that just providing platform specific UIs is not sufficient to support all possible kinds
of devices and modalities. Therefore, we propose a model based approach to develop
UIs that can be provided and adapted on the fly.
As we have identified the necessity to work with UI modeling (see also. [2]), we
present MIPIM (Multimodal Interface Presentation and Interaction Model), a new
dialog model for the design of multimodal User Interfaces. MIPIM concerns lower
levels in contrast to high level approaches as task modeling, e.g. given in [2]. Mainly
covered are UI specification and control modeling that allow easy modifications of
the UIs during the development cycles and support automated UI adaptations.

2 Dialog Model

Our dialog model provides three components for interaction, dialog flow, and
presentation. Since our model aims for multimodality, user interaction is received by

222 R. Schaefer, S. Bleul, and W. Mueller

the multimodal interaction component. This component accepts input in different
modalities and triggers the behavior resolver, which in turn starts generating the
resulting UI that will be presented by the multimodal interface presentation
component for the activated modalities. The dialog flow specification plays a central
part. On a first glance it resembles the model, UIML [3] is based on, with a separation
between structure and style and the specification of the dialog behavior. However, the
specification of the dialog behavior takes a different approach and is based on DSN
concepts [4].
DSN allows bundling several local states of a UI and performing a multi state
transition through the definition of variables and events together with rules that map
events to a new set of states in one pass.

The second important property of this new dialog model is the support of generic
widgets that are modality agnostic by providing most basic operations, as described in
[5], along with a presentation of the architecture and an according XML-based
modeling language. The multimodal presentation component is used to map the
generic widgets to widgets in a specific modality, while the interaction component
does a reverse mapping of these widgets and by that allowing the use of virtually any
device or modality for interaction.

3 Conclusion and Future Work

We have presented the MIPIM dialog model, which provides the theoretical
background of the framework we presented in [5]. At the moment, we have built a
prototype implementation for mobile phones, which demonstrates the efficiency in
which our dialog model works on limited devices. In near future, we explore further
how to establish real multi device interaction. The foundation is already laid in the
control model. Furthermore we plan to integrate our work in larger environments with
respective mappings.

References

1. Larson, J.A.., Raman, D.R.(eds.): Multimodal Interaction Framework. W3C Note (2003)
2. Paternò, F., Santoro, C.: One model, many interfaces. In: Proceedings Forth International

Conference on Computer Aided Design of User Interfaces, Kluwer Academic (2002)
3. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: UIML: an

appliance-independent xml user interface language. In Computer Networks 31, Elsevier
Science (1999)

4. Curry, M.B., Monk, A.F.: Dialogue modeling of graphical user interfaces with a production
system. In Behaviour and Information Technology, Vol. 14, No. 1, pp 41-55 (1995)

5. Mueller, W., Schaefer, R., Bleul, S.: Interactive Multimodal User Interfaces for Mobile
Devices. In: Proc. 37th Hawaii International Conference on System Sciences (2004).

A Novel Dialog Model for the Design of Multimodal User Interfaces 223

Discussion

[Remi Bastide] I wonder if there is a significant difference in expressiveness between
DSN and UML Statecharts.

[Robbie Schaefer] Statecharts are very powerful and can express many
things that DSN cannot. But DSN is more convenient to use.

[Michael Harrison] DSN appear to be an enconding of StateCharts.
[Remi Bastide] Statecharts avoid the combinatorial explosion of finite state machines.

[Robbie Schaefer] I will have to examine that.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 224-227, 2005.
 IFIP International Federation for Information Processing 2005

Navigation Patterns – Pattern Systems Based on
Structural Mappings

Jürgen Ziegler, Markus Specker

University Duisburg-Essen, Germany
ziegler@informatik.uni-duisburg.de
specker@informatik.uni-duisburg.de

The use of design patterns as a methodical approach to codifying and communicating
design knowledge and best practice solutions has become popular in software
engineering and, more recently, also in the field of human computer interaction (e.g.
[Tidwell, 1999], [Borchers, 2001], [Lyardet et al., 1999] and [van Duyne et al.,
2002]). Existing HCI pattern collections, however, often appear rather unsystematic
and arbitrarily composed, lacking the quality of a coherent pattern language that some
authors have demanded. To address this problem, we propose a stronger conceptual
integration of the notions design pattern and design space. Design spaces allow to
explore potential design solutions along the values of one or more defined
dimensions. We aim at systematizing design patterns by allocating (or deriving) them
in (or from) design spaces. This approach allows to not only categorize existing
patterns, but also to derive new patterns (which may subsequently be analyzed for
their usability).

 The design space with associated patterns we propose here, is aimed at describing
user navigation in interactive systems. The central idea is that a navigation pattern is
defined by the mapping from the structure of the content to be shown and navigated,
to the actual navigation structure offered by the user interface. This notion
corresponds to the well-known model-view concept and assumes that each content
structure type (essentially sets, lists, hierarchies and networks) can, in principle, be
mapped to all types of navigation structures (see Fig. 1). Three major cases can be
distinguished for this mapping:
In the isomorphic case, both the content structure and the navigation structure are
identical. This is the case, for instance, when mapping a hierarchical content structure
to a tree widget, which supports hierarchical access to the content nodes. While this
case is straightforward and probably the easiest for the user in terms of transparency,
there are two important other cases that may be used for a variety of reasons such as
screen space limitation, visual search etc. In the structure loss case, complex content
structures are mapped to simpler navigation structures by leaving out dependency
information (example see Fig. 2 top). Conversely, there is the case of structure gain,
where simple content structures, such as sets of information objects, can be accessed
through more complex navigation structures (such as a tree) which are created
interactively ‘on the fly’ based on some attribute or characteristic of the content (see
Fig. 2 bottom). As an example, a flat list of emails can be grouped hierarchically by
sender and subject. Although this dynamically created navigation tree may look
identical to a ‘real’ hierarchy, there are important differences in the underlying

Navigation Patterns – Pattern Systems Based on Structural Mappings 225

semantics and the operations the user can perform. Rearranging nodes in the case of
grouped emails, for instance, is not meaningful.

The pattern categories presented are elementary and can be combined in a variety
of ways for designing navigation in real user interfaces. We believe that this approach
allows a more grounded and systematic exploration and evaluation of navigational
patterns. Future work is planned to investigate usability characteristics of these
patterns to associate suitable usability metrics with each pattern.

-/?multi-level grouping of list
items (based e.g. on value
of some attribute)

menu list‚
index

panel with ordered objects
(e.g. as icons or
thumbnails)

List

tree with auto-generated
cross-links

tree view with
expand/collapse functions.
menu with multiple levels
visible,

single menu per level,
'bread crumbs' list

-/?Hierarchy

graph representation of
network

tree view showing
spanning tree

list of traversed nodes
-/?

Net

-/?

multi-level grouping of set
elements (based e.g. on
value of some attribute)

objects interactively
sorted by some attributes

panel with objects (e.g. as
icons or thumbnails)

Set

NetHierarchyListSet

Navigation
structure

Content
structure

-/?multi-level grouping of list
items (based e.g. on value
of some attribute)

menu list‚
index

panel with ordered objects
(e.g. as icons or
thumbnails)

List

tree with auto-generated
cross-links

tree view with
expand/collapse functions.
menu with multiple levels
visible,

single menu per level,
'bread crumbs' list

-/?Hierarchy

graph representation of
network

tree view showing
spanning tree

list of traversed nodes
-/?

Net

-/?

multi-level grouping of set
elements (based e.g. on
value of some attribute)

objects interactively
sorted by some attributes

panel with objects (e.g. as
icons or thumbnails)

Set

NetHierarchyListSet

Navigation
structure

Content
structure

Structure loss

S
t
r
u
c
t
u
r
e

g
a
i
n

Fig. 1. Design space for navigation patterns ('-/?' : no meaningful patterns known). Several
concrete patterns can exist in each category.

Fig. 2. Top: example for the mapping from hierarchy to list (’bread crumbs’ pattern, only one
path into a hierarchy is visible). Bottom: mapping from list to hierarchy by multi-level grouping
of emails.

226 J. Ziegler and M. Specker

References
[Borchers, 2001] Borchers, J.:A Pattern Approach to Interaction Design. Chichester, USA, John

Wiley & Sons, (2001).
[Lyardet et al., 1999] Lyardet, F., Rossi, G., Schwabe, D. : Discovering Patterns in the WWW.

Multimedia Tools and Applications, 8, 293-308.
[Tidwell, 1999] Tidwell, J.: Common Ground: A Pattern Language for Human Computer

Interface Design. – http://www.mit.edu/~jtidwell/common_ground.html
[van Duyne et al., 2002] van Duyne, B., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns,

Principles, and Processes for Crafting a Customer-Centered Web Experience, Boston USA:
Addison-Wesley, (2002).

Discussion

[Gerit van der Veer] I like the approach of building a design space and then
populating it. This is the opposite of what we did, where we started from user
problems and started categorizing based on problems seen by users. You are right that
this approach will not lead to solutions, but this helps understand the design space.

[Jürgen Ziegler] The use of design spaces here gives a lot of insight. But
there may be patterns that are more valuable expressed from the user's point
of view, particularly if it represents best practices or years of experience. The
two approaches should come together.

[Bonnie John] I like this stuff. What is navigational about this space? it looks like
representation of structured information. Navigation is about getting from one place
to another.

[Jürgen Ziegler] Essentially you need means of getting from one place to
another. The patterns provide the access instruments to the content.

[Bonnie John] But someone could use an expandable tree view, expand everything
and simply scroll over it. There is missing some way of capturing the interaction
component.

[Jürgen Ziegler] Yes, this is primarily structural. There needs to be some
way of showing how they are used and composed.

[Bonnie John] And how they are useful.

[Jürgen Ziegler] We would like to come up with usability characteristics. Is
it better to have a single expanding tree or multiple expanding trees? For
what purposes is each best appropriate.

[Bonnie John] There was some stuff you listed that doesn't appear in the design space.
E.g., drawings with a lot of detail.

[Jürgen Ziegler] Yes, there is room for further distinctions, like if you have a
large map.

[Bonnie John] I'm trying to fit in some of the examples you had, like the detailed view
in the wired view, used to navigate in a CAD system.

Navigation Patterns – Pattern Systems Based on Structural Mappings 227

[Jürgen Ziegler] It depends on what the interactor is being used for. Is it a
hierarchical collection of documents? It is still important to know that the
underlying thing is hierarical. I think it fits into the scheme.

[Morten Borup Harning] I have a problem with what you call the structure gain. I
think that content-wise, what is there is not what you would call content. E.g., if you
have a simple list of things, you need to add information to do that. Otherwise, the
added information will be random, which moves the content over to the other side.

[Jürgen Ziegler] That's an issue for discussion. I was thinking of explicit
structural representations, like in the mail or task sorting example, the
information must be there showing where the items are categorized. One
might argue that it's difficult to build up a structure from nothing, and that is
true. Some information must be used to build the structure even if it was not
there in the first place.

[Morten Borup Harning] I would argue from the point of view of the pattern, it makes
no difference if the structure was initially there or not.

[Jürgen Ziegler] But there may be impacts on the interface. For example, can
we allow drag and drop between clusters? This is a surface operation that
may not be encoded in the underlying data structure.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 228-244, 2005.
 IFIP International Federation for Information Processing 2005

Spatial Control of Interactive Surfaces in an Augmented
Environment

Stanislaw Borkowski, Julien Letessier, and James L. Crowley

Project PRIMA, Lab. GRAVIR-IMAG
INRIA Rhône-Alpes, 655, ave de l’Europe

38330 Montbonnot, France
{Stan.Borkowski, Julien.Letessier, James.Crowley}@inrialpes.fr

Abstract. New display technologies will enable designers to use every surface
as a support for interaction with information technology. In this article, we
describe techniques and tools for enabling efficient man-machine interaction in
computer augmented multi-surface environments. We focus on explicit
interaction, in which the user decides when and where to interact with the
system. We present three interaction techniques using simple actuators: fingers,
a laser pointer, and a rectangular piece of cardboard. We describe a graphical
control interface constructed from an automatically generated and maintained
environment model. We implement both the automatic model acquisition and
the interaction techniques using a Steerable Camera-Projector (SCP) system.

1 Introduction

Surfaces dominate the physical world. Every object is confined in space by its
surface. Surfaces are pervasive and play a predominant role in human perception of
the environment. We believe that augmenting surfaces with information technology
will act as an interaction modality easily adopted for a variety of tasks. In this article,
we make a step towards making this a reality.

Current display technologies are based on planar surfaces [8, 17, 23]. Displays are
usually treated as access points to a common information space, where users
manipulate vast amounts of information with a common set of controls. Given recent
developments in low-cost display technologies, the available interaction surface will
continue to grow, forcing the migration of interfaces from a single, centralized screen
to many, space-distributed interactive surfaces. New interaction tools that
accommodate multiple distributed interaction surfaces will be required.

In this article, we address the problem of spatial control of an interactive display
surface within an office or similar environment. In our approach, the user can choose
any planar surface as a physical support for interaction. We use a steerable assembly
composed of a camera and video projector to augment surfaces with interactive
capabilities. We exploit our projection-based augmentation to attain three goals: (a)
modelling the geometry of the environment by using it as a source of information, (b)
creation of interactive surfaces anywhere in the scene, and (c) realisation of novel
interaction techniques through augmentation of a handheld display surface.

Spatial Control of Interactive Surfaces in an Augmented Environment 229

In the following sections, we present the technical infrastructure for
experimentation with multiple interactive surfaces in an office environment
(Sections 3 and 4). We then discuss spatial control of application interfaces in
Section 5. In Sections 6, 7 and 8 we describe three applications that enable explicit
control of interface location. We illustrate interaction techniques with a single
interaction surface controlled in a multi-surface environment, but we emphasize that
they can be easily extended to the control of multiple independent interfaces
controlled within a common space.

2 Camera-Projector Systems

Camera-projector systems are increasingly used in augmented environment systems
[11, 13, 21]. Projecting images is a simple way of augmenting everyday objects and
allows alteration of their appearance or function. Associating a video projector with a
video camera offers an inexpensive means of making projected images interactive.
However, standard video-projectors have small projection area which limits their
flexibility in creating interaction spaces. We can achieve some steerability on a rigidly
mounted projector by moving sub windows within the cone of projection [22], but
extending or moving the display surface requires increasing the angle range of the
projector beam. This requires adding more projectors, an expensive endeavor. An
alternative is to use a steerable projector [2, 12]. This approach is becoming more
attractive, due to a trend towards increasingly small and inexpensive video projectors.

Projection is an ecological (non-intrusive) way of augmenting the environment.
Projection does not change the augmented object itself, only its appearance.
Augmentation can be used to supplement the functionality of objects. In [12],
ordinary artefacts such as walls, shelves, and cups are transformed into informative
surfaces, but the original functionality of the objects does not change. The objects
become physical supports for virtual functionalities. An example of object
enhancement is presented in [1], where users can interact with both physical and
virtual ink on a projection-augmented whiteboard.
While vision and projection-based interfaces meet most of the ergonomic
requirements of HCI, they suffer from lack of robustness due to clutter and
insufficiently developed methods for text input. People naturally avoid obstructing
projected images, so occlusion is not a problem when camera and projector share the
same viewpoint. As for the issue of text input on projected steerable interfaces,
currently available projected keyboards like the Canesta Projection Keyboard [16]
rely on hardware configuration, which excludes their use on arbitrary surfaces.
Resolving this issue is important for development of projection-based interfaces, but
it is outside the scope of this work.

230 S. Borkowski, J. Letessier, and J.L. Crowley

3 The Steerable Camera-Projector System

In our experiments, we use a Steerable Projector-Camera (SCP) assembly (Figure 1).
It enables us to experiment with multiple interactive surfaces in an office
environment.

Fig. 1. The Steerable Camera-Projector pair.

The Steerable Camera-Projector (SCP) platform is a device that gives a video-
projector and its associated camera two mechanical degrees of freedom, pan and tilt.
Note that the projector-camera pair is mounted in such a way that the projected beam
overlaps with the camera view. Association of the camera and projector creates a
powerful actuator-sensor pair enabling observation of users’ actions within the
camera field of view. Endowed with the ability to modify the scene using projected
light, projector-camera systems can be exploited as sensors (Section 5.2).

4 Experimental Laboratory Environment

The experiments described below are performed in our Augmented Meeting
Environment (AME). The AME is an ordinary office equipped with ability to sense
and act. The sensing infrastructure includes five steerable cameras, a fixed wide angle
camera, and a microphone array. The wide angle camera has a field of view that
covers the entire room. Steerable cameras are installed in each of the four corners of
the room. A fifth steerable camera is centrally mounted in the room as part of the
steerable camera-projector system (SCP).

Within the AME, we can define several surfaces suitable for supporting projected
interfaces. Some of these are marked by white boundaries in Figure 2. These regions
were detected by the SCP during an automatic off-line environmental model building
phase described below (Section 5.2). Surfaces marked with dashed boundaries can be
optionally calibrated and included in the generated environment model using the
device described in Section 8.

Spatial Control of Interactive Surfaces in an Augmented Environment 231

Fig. 2. Planar surfaces in the environment.

5 Spatial Control of Displays

Interaction combines action and perception. In an environment where users may
interact with a multitude of services and input/output (IO) devices, both perception
and interaction can be complex. We present a sample scenario in Section 5.1 and
describe our approach to automatic environment model acquisition in Section 5.2, but
first we discuss the relative merits of our approach to interaction within an augmented
environment.

Explicit vs. Implicit. Over the last few years, several research groups have
experimented with environments augmented with multiple display surfaces using
various devices such as flat screens, whiteboards, video-projectors and steerable
video-projectors [3, 8, 11, 13, 21, 23]. Most of these groups focuse on the integration
of technical infrastructure into a coherent automated system, treating the problem of
new methods for spatial control of interfaces as a secondary issue. Typically, the
classic paradigm of drag and drop is used to manipulate application interfaces on a set
of wall displays and table display [8]. In such systems, discontinuities in the transition
between displays disrupt interaction and make direct adaptation of drag and drop
difficult.

An alternative is to liberate the user by letting the system take control of interface
location. In [11], the steerable display is automatically redirected to the surface most
appropriate for the user. Assuming a sufficient environment model, the interface
follows the user by jumping from one surface to another. However, this solution has
disadvantages. For one, it requires continuous update of the environment model. More
importantly, the system has to infer if the user wants to be followed or not. Such a
degree of understanding of human activity is beyond the state of the art.

The authors in [3] combine automatic and explicit control. By default, the
interface follows its owner in the augmented room. The user can also choose a display
from a list. However, their approach assumes that the user is able to correctly identify
the listed devices. Moreover, the method of passing back and forth from automatic to

232 S. Borkowski, J. Letessier, and J.L. Crowley

manual control mode is not clearly defined. In this work, we focus on developing
interaction techniques that enable users to explicitly control the interface position in
space.

Ecological vs. Emmbedded. In ubiquitous computing, panoply of small interconnected
devices embedded in the environment or worn by the user are assumed to facilitate
continuous and intuitive access to virtual information spaces and services. Many
researchers follow this approach and investigate new interaction types based on
sensors embedded in artifacts or worn by users [14, 18, 19]. Although embedding
electronic devices leads to a number of efficient interface designs, in many
circumstances it is unwise to assume that everyone will be equipped with the
necessary technology. Moreover, as shown in [1, 3], one can obtain pervasive
interfaces by embedding computational infrastructure in the environment instead. Our
approach is to create new interaction modes and devices by augmenting the
functionality of mundane artifacts without modifying their primary structure.

User-centric vs. Sensor-centric. Coutaz et al. [7] highlight the duality of interactive
systems. We apply this duality to the analysis of environment models, extending our
understanding of the perceived physical space. When building an environment model,
the system typically generates a sensor-centric representation of the scene, but this
abstraction is not necessarily comprehensible for the human actor. A common
understanding of the environment requires translation of the model into a user-centric
representation. Such an approach is presented in [3], where the authors introduce an
interface for controlling lights in a room. Lamps are shown graphically on a 2D map
of the environment, and the user chooses from the map which light to dim or to
brighten. The problem is that modeling the real-world environment in order to
generate and maintain a human-comprehensible representation of the space is a
difficult and expensive task. Moreover, from the user’s perspective, the physical
location of the controlled devices is not as important as the effect of changing a
device’s state. Rather than showing the user a symbolic representation of the world,
we enrich the sensor-centric model with contextual cues that facilitate mapping from
an abstract model to the physical environment.

In summary, we impose the following constraints on multi-surface systems:
1. Users have control of the spatial distribution of applications when they have direct

or actuator-mediated access to its interface.
2. Users can control the system both “as they come” without specific tools, and with

the use of control devices.
3. The mapping between the symbolic representation of the controller interface and

the real world is understandable by an unexperienced user, provided sufficient
contextual cues.

4. The underlying sensor-centric model of the environment is generated and updated
automatically.

In the following section, we illustrate our expectations of a multi-surface interaction
system with a scenario.

Spatial Control of Interactive Surfaces in an Augmented Environment 233

5.1 Scenario

John, a professor in a research laboratory, is in his office preparing slides for a project
meeting. As the project partners arrive, John hurryly moves the presentation he just
finished to a large wall-mounted screen in the meeting room, choosing it from a list of
available displays. The list contains almost twenty possible locations in his office and
in the meeting room. John has no trouble making his selection because the name of
each surface is beside its image as it appears in the scene.

During the meeting, John uses a wide screen to present slides about software
architecture. John uses an ordinary laser-pointer to highlight important elements in the
slide. The slides are also projected onto a whiteboard so that John can make notes
directly on them by drawing on the white board with an ink pen. On command he can
record his notations in a new slide that combines his notations with the projected
material. At one point, John sees that there is not enough free space on the white
board, so he decides to move the projected slide to free some space for notes. He
“double-blinks” the laser-pointer on the image, so that the image follows the laser dot.

While the project participants discuss the problem at hand, it becomes apparent
that it is useful to split the meeting in three sub-workgroups. John takes one of the
groups to his office. From the display list, John chooses the largest surface in his
office. He sends the slide to this surface. A second group gathers around the desk in
the meeting room. John sends the relevant slide from the wide screen to the desk with
the use of a laser-pointer. The third smaller group decides to work in the back of the
meeting room. Since there is no display, they take a cardboard onto which they
transfer their application interface. They continue their work by interacting directly
with the interface projected on the portable screen.

5.2 Environment Modeling and Image Rectification

In our approach to human-computer interaction, it is critical that the system is aware
of its working space in order to provide appropriate feedback to the user. The
graphical user interfaces enabling explicit control of the display location (Sections 6
and 7) are generated based on the environment model. They contain information
facilitating mapping of the virtual sensor-centric model to the physical space.

Although 3D environment models have many advantages for applications
involving the use of steerable interfaces, they are difficult to create and maintain. One
often makes the simplifying assumption that they exist beforehand and do not change
over time [3, 11]. Instead, we propose automatic acquisition of a 2D environment
model. The model consists of two layers: (a) a labelled 2D map of the environment in
the SCP’s spherical coordinate system and (b) a database containing the acquired
characteristics for each detected planar surface. Our environment model directly
reflects the available sensor capabilities of our AME.

To acquire the model of the environment, we exploit the SCP’s ability to modify
the environment by projecting and controlling images in the scene. Model acquisition
consists of two phases: first, planar surfaces are detected and labelled with unique
identifiers, and second, an image of each planar surface is captured and stored in the
model database. In the second phase, the system projects a sample image on each

234 S. Borkowski, J. Letessier, and J.L. Crowley

planar surface detected in the environment model and takes a shot of the scene with
the camera that has the projected image in its field of view. The images show the
available interaction surfaces together with their surroundings. They are used later-on
to provide users with contextual information which facilitates the mapping between
the sensor-centric environment model and the physical world.

In order to customize the system, users should have the ability to supplement or
replace the images in the model database with other data structures (e.g. text labels or
video sequences). Using an interaction tool described in Section 8, the model is
updated each time a new planar surface is defined in the environment.

Detection of planar surfaces. Most existing methods for projector-screen geometry
acquisition provide a 3D model of the screen [5, 25]. However, such methods require
the use of a calibrated projector-camera pair separated by a significant base distance.
Thus, they are not suitable for our laboratory. In our system, we employ a variation of
the method described in [2]. We use a steerable projector and a distant non-calibrated
video camera to detect and estimate orientation of planar surfaces in the scene.The
orientation of a surface with respect to the beamer is used to calculate a pre-warp that
is applied to the projected image. The pre-warp compensates for oblique projective
deformations caused by the non-orthogonality of the projector’s optical axis relative
to the screen surface. Note that the pre-warped image uses only a subset of the
available pixels. When images are projected at extreme angles, the effective
resolution can drop to a fraction of the projector’s nominal resolution. This implies
the need for an interface layout adaptation mechanism, that takes into account
readability of the interface at a given projector-screen configuration. Adaptation of
interfaces is a vast research problem and is not treated in this work.

6 Listing the Available Resources

In this section, we present a menu-like automatically generated interface enabling a
user to choose the location of the display or application interface.

Pop-up and scroll-down menus are known in desktop-based interfaces for at least
twenty years. Since planar surfaces in the environment can be seen as potential
resources, it is natural to use a menu as a means for choosing a location for the
interface.

Together with the projected image as application interface, we project an
interactive button that is sensitive to touch-like movements of the user’s fingertip.
When the user touches the button, a list of available screen locations appears
(Figure 3).

Spatial Control of Interactive Surfaces in an Augmented Environment 235

Fig. 3. Interacting with a list of displays (envisionment).

As mentioned in Section 5, we enhance the controller interface with cues that help
map the interface elements to the physical world. Therefore, we present each list item
as an image taken by one of the cameras installed in the room. We automatically
generate the list based on images taken during the off-line model building process
(Section 5.2). The images show the available interaction surfaces together with their
surroundings. The user chooses a new location for the interface by passing a finger
over a corresponding image. Note that one of the images shows a white cardboard,
which is an interaction tool described in Section 8. In order to avoid accidental
selection, we include a “confirm” button. The user cancels the interaction with the
controller application by touching the initialization button again. The list also
disappears if there is no interaction for a fixed period of time.

One can easily extend our image-based approach for providing contextual cues
from interface control to general control of visual-output devices. For example,
instead of showing a map of controllable lamps in a room, we can display a series of
short sequences showing the corresponding parts of the room under changing light
settings. This allows the user to visualize the effects of interaction with the system
before actual execution.

6.1 Vision-Based Touch Detection

Using vision as an user-input device for a projected interface is an elegant solution
because (a) it allows for direct manipulation, i.e. no intermediary pointing device is
used, and (b) it is ecological – no intrusive user equipment is required, and bare-hand
interaction is possible. This approach has been validated by a number of research
projects, for instance the DigitalDesk [24], the Magic Table [1] or the Tele-Graffiti
application [20].

Existing vision-based interactive systems track the acting member (finger, hand,
or head) and produce actions (visual feedback and/or system side effects) based on
recognized gestures. One drawback is that a tracking system can only detect
apparition, movement and disparition events, but no “action” event comparable to the
mouse-click in conventional user interfaces, because a finger tap cannot be detected
by a vision system alone [24]. In vision-based UIs, triggering a UI feature (e.g. a

236 S. Borkowski, J. Letessier, and J.L. Crowley

button widget) is usually performed by holding (or “dwelling”) the actuator (e.g. over
the widget) [1, 20].

Various authors have tried different approaches to finger tracking, such as
correlation tracking, model-based contour tracking, foreground segmentation and
shape filtering, etc. While many of these are successful in constrained setups, they
perform poorly for a projected UI or in unconstrained environments. Furthermore,
they are computationally expensive. Since our requirements are limited to detecting
fingers dwelling over button-style UI elements, we don’t require a full-fledged
tracker.

Approach. We implement an appearance-based method based on monitoring the
perceived luminance over UI widgets. Consider the two areas depicted in Figure 4.

Fig. 4. Surfaces defined to detect touch-like gestures over a widget.

The inner region is assumed to roughly be of the same size as a finger. We denote
Lo(t) and Li(t) to be the average luminance over the outer and inner surface at time
t, and

)()(:)(tLtLtL io
Assuming that the observed widget has a reasonably uniform luminance, L is

close to zero at rest, and is high when a finger hovers over the widget. We define the
threshold to be twice the median value of L(t) over time when the widget is not
occluded. Given the measured values of L(t), the system generates the event 0e

(or 1e), at each discrete timestep t when L(t)< (or). These events are fed into a
simple state machine that generates a Touch event after a dwell delay (Figure 5).

Spatial Control of Interactive Surfaces in an Augmented Environment 237

Fig. 5. The finite state machine used to process widget events.

We define two delays: to prevent false alarms (the Dwell Sleep transition is
only triggered after this delay), and ' to avoid unwanted repetitive triggering (the
Sleep Idle transition is only triggered after this delay). A Touch event is issued
whenever entering the Sleep state. and ' are chosen equal to 200 ms. This
technique achieves robustness against full occlusion of the UI component (e.g. by the
user’s hand or arm), since such occlusions cause L to remain under the chosen
threshold.

Experimental results. Our relatively simple approach provides good results

because it is robust to changes in lighting conditions (it is a memory-less process),
and occlusions (due to the dynamic nature of event generation and area-based
filtering). Furthermore, it is implemented as a real-time process (it runs at camera
frequency with less than 50 ms latency), although its cost scales linearly with the
number of widgets to monitor.

An example application implemented with our “Sensitive Widgets” approach is
shown in Figure 6. The minimal user interface consists of four projected buttons that
can be “pressed” i.e. partially occluded with one or more fingers, to navigate through
a slideshow.

Using this prototype, we confirm that our approach is robust to arbitrary changes
in lighting conditions (the interface remains active during the changes) and full
occlusion of widgets.

Integration. We integrate “Sensitive widgets” into a Tk application in an object

oriented fashion: they are created and behave as usual Tk widgets. The
implementation completely hides the underlying vision process, and provides
activation (Click) events without uncertainty.

238 S. Borkowski, J. Letessier, and J.L. Crowley

Fig. 6. The “Sensitive Widgets” demonstration interface. Left: The graphs exhibit the evolution
of a variable in time: (1) Li(t) ; (2) Lo(t) ; (3) L(t). Notice the high value of L while the user
occludes the first widget. The video feedback (4) also displays the widget masks as transparent
overlays. Right: The application interface as seen by the user (the control panel wasn’t hidden),
in unconstrained lighting conditions (here, natural light).

7 Laser-Based Control

Having a large display or several display locations demands methods to enable
interaction from a distance. Since pointing with a laser is intuitive, many researchers
have investigated how to use laser-pointers to interact with computers [4, 9]. Most of
them try to translate laser-pointer movements to events similar to those generated by a
mouse. According to Myers et al. [10], pointing at small objects with a laser is much
slower than with standard pointing devices, and less precise compared to physical
pointing. On the other hand, pointing with a hand or finger has a very limited range.
Standard pointing devices like the mouse or trackball provide interaction techniques
that are suitable for a single screen setup, even if the screen is large, but they cannot
by adapted to multiple display environments with complex geometry. Hand pointing
from a distance provides interesting results [6], but the pointing resolution is too low
to be usable, and stereoscopic vision is required.

In our system, we use laser-based interaction exclusively to redirect the beamer
(SCP) from one surface to another. This corresponds to moving an application
interface to a different location in the scene. Users are free to use their laser pointers

Spatial Control of Interactive Surfaces in an Augmented Environment 239

in a natural fashion. They can point at anything in the room, including the projected
images. The system does not respond unless a user makes an explicit sign.

In our application, interaction is activated with a double sequence of switching the
laser on and off while pointing to roughly the same spot on the projected image. If
after this sign the laser point appears on the screen and does not move for a short
time, the control interface is projected. During the laser point dwell delay we estimate
hand jitter in order to scale the controller interface appropriately, as explained below.

Fig. 7. Laser-based control interface (envisonment)

The interface shown in Figure 7 is a semi-transparent disc with arrows and thumbnail
images. The arrows point to physical locations of the available displays in the
environment. Similar to the menu-like controller application, the images placed at the
end of each arrow are taken from the environment model. They present each display
surface as it appears in the scene. The size of the images is a function of the measured
laser point jitter. So is the size of the small internal disc representing the dead-zone, in
which the laser dot can stay without reaction of the system. The controller interface is
semi-transparent in order to avoid breaking users’ interaction with the application, in
case of a false initialization.

In order to avoid unwanted system reaction, the interface is not active when it
appears. To activate it, the user has to explicitly place and keep the laser dot for a
short time in any of the GUI’s elements (arrow, image or disc). As the user moves the
laser point within the yellow outer disc, the system starts to move the interface
following the laser point with the center of the disc. This movement is limited to the
area of the current display surface. Interface movement is slow for proper user
control. When the laser goes outside the yellow disc or enters an arrow, movement
halts. The user can then place the laser dot in the image of choice. As the laser point
enters an image, the application interface immediately moves across the room to the
corresponding surface. The controller interface does not appear on the newly chosen
display unless it is again activated. At any time during the interaction process, the
user can cancel the interaction by simply switching off the laser pointer.

240 S. Borkowski, J. Letessier, and J.L. Crowley

7.1 Laser Tracking with a Camera

Several authors have investigated interaction from a distance using a laser pointer [4,
9,10].

Once we achieve geometric calibration of the camera and projector fields of view,
detection and tracking the laser pointer dot is a trivial vision problem. Since laser light
has a high intensity, a laser spot is the only visible blob on an image captured with a
low-gain camera. The detection is then obtained by thresholding the intensity image
and determining the barycentre of the connected component. Robustness against false
alarms can be achieved by filtering out connected components that have aberrant
areas.
As for other tracking systems, the output is a flow of appear, motion and disappear
events with corresponding image-space positions. We achieve increased robustness
by:
 generating appear events only once the dot has been consistently detected over

several frames (e.g. 5 frames at 30Hz);
 similarly delaying the generation of disappear events.

We are not concerned by varying lighting conditions and shadowing because the
camera is set to low gain. Occlusion, on the other hand, is an issue because an object
passing through the laser beam causes erratic detections, which should be filtered out.

The overall simplicity of the vision process allows it to be implemented at camera
rate (ca. 50Hz) with low latency (ca. 10ms processing time). Thus, it fulfils closed-
loop human-computer interaction constraints.

8 A Novel User-Interface: The PDS

Exploiting robust vision-based tracking of an ordinary cardboard using an SCP unit
[2] enables the use of a Portable Display Surface (PDS). We use the SCP to maintain
a projected image onto the hand-held screen (PDS), automatically correcting for 3D
translations and rotations of the screen.

We extend the concept of the PDS by integrating it in our AME system. As
described in the example scenario (Section 5.1), the PDS can be used as a portable
physical support for a projected interface. This mode of use is a variation of the “pick
and drop” paradigm introduced in [15]. From the system point of view, the only
difference between a planar surface in the environment and the PDS is its mobility
and the image-correction matrix, so we can project the same interactive-widget-based
interface on both static and portable surfaces. In practice, we have to take in account
the limits of the image resolution available on the PDS surface.

The portability of this device creates two additional roles for the PDS in the AME
system. It can serve as a means for explicit control of the display location and as a
tool enabling the user to extend the environment model to surfaces which are not
detected during the offline model acquisition procedure. Actually, the two modes are
closely coupled and the extension of the environment model is transparent for the
user.

Spatial Control of Interactive Surfaces in an Augmented Environment 241

To initialize the PDS, the user has to choose the corresponding item in the GUIs
described in previous sections. Then, the SCP projects a rectangular region into which
the user has to put the cardboard screen. If no rectangular object appears in this region
within a fixed delay, the system falls back to its previous state. When the PDS is
detected in the projected initialization region, the system transfers the display to the
PDS and starts the tracking algorithm. The user can then move in the environment
with the interface projected on the PDS. To stop the tracking algorithm, the user
touches the “Freeze” widget projected on the PDS. The location of the PDS together
with the corresponding pre-warp matrix is thus added to the environment model as
new screen surface. This mechanism allows the system to dynamically update the
model.

9 Conclusions

The emergence of spatially low-constrained working environments calls for new
interaction concepts. This paper illustrates the issue of spatial control of a display in a
multiple interactive-surface environment. We use steerable camera-projector
assembly to display an interface and to move it in the scene. The projector-camera
pair is also used as an actuator-sensor system enabling automatic construction of a
sensor-centric environment model. We present three applications enabling convenient
control of the display location in the environment. The applications are based on
interactions using simple actuators: fingers, a laser pointer and a hand-held cardboard.

We impose a strong relation between the controller application interface and the
physical world. The graphical interfaces are derived from the environment model,
allowing the user to map the interface elements to the corresponding real-world
objects. Our next development step is to couple controller applications with standard
operating systems infrastructure.

Acknowledgments

This work has been partially funded by the European project FAME (IST-2000-
28323), the FGnet working group (IST-2000-26434), and the RNTL/Proact ContAct
project.

References

1. F. Bérard. The magic table: Computer-vision based augmentation of a whiteboard for
creative meetings. In Proceedings of the ICCV Workshop on Projector-Camera Systems.
IEEE Computer Society Press, 2003.

2. S. Borkowski, O. Riff, and J. L. Crowley. Projecting rectified images in an augmented
environment. In Proceedings of the ICCV Workshop on Projector-Camera Systems. IEEE
Computer Society Press, 2003.

3. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving: Technologies for
intelligent environments. In Proceedings of Handheld and Ubiquitous Computing,
September 2000.

242 S. Borkowski, J. Letessier, and J.L. Crowley

4. J. Davis and X. Chen. Lumipoint: Multi-user laser-based interaction on large tiled
displays. Displays, 23(5), 2002.

5. R. Raskar et al. iLamps: Geometrically aware and self-configuring projectors. In Appears
ACM SIGGRAPH 2003 Conference Proceedings.

6. Yi-Ping Hungy, Yao-Strong Yangz, Yong-Sheng Cheny, Ing-Bor Hsiehz, and Chiou-
Shann Fuhz. Free-hand pointer by use of an active stereo vision system. In Proceedings
of the 14th International Conference on Pattern Recognition (ICPR’98), volume 2, pages
1244–1246, August 1998.

7. J.Coutaz, C.Lachenal, and S. Dupuy-Chessa. Ontology for multi-surface interaction. In
Proceedings of the ninth International Conference on Human-Computer Interaction
(Interact’2003), 2003.

8. B. Johanson, G. Hutchins, T. Winograd, and M. Stone. Pointright: Experience with
flexible input redirection in interactive workspaces. Proceedings of UIST-2002, 2002.

9. D. R. Olsen Jr and T. Nielsen. Laser pointer interaction. In ACM CHI’2001 Conference
Proceedings: Human Factors in Computing Systems. Seattle, WA, 2001.

10. B. A. Meyers, R. Bhatnagar, J. Nichols, C.H. Peck, D. Kong, R. Miller, and A.C. Long.
Interacting at a distance: measuring the performance of laser pointers and other devices.
In Proceedings of the SIGCHI conference on Human factors in computing systems:
Changing our world, changing ourselves. ACM Press New York, NY, USA, April 2002.

11. G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen, M. Podlaseck, H. Chen, and
N. Sukaviriya. Steerable interfaces for pervasive computing spaces. In Proceedings of
IEEE International Conference on Pervasive Computing and Communications -
PerCom’03, March 2003.

12. C. Pinhanez. The everywhere displays projector: A device to create ubiquitous graphical
interfaces. In Proceedings of Ubiquitous Computing 2001 Conference, September 2001.

13. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the future:
A unified approach to image-based modeling and spatially immersive displays. In
Proceedings of the ACM SIGGRAPH’98 Conference.

14. J. Rekimoto. Multiple-computer user interfaces: "beyond the desktop" direct
manipulation environments. In ACM CHI2000 Video Proceedings, 2000.

15. J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially continuous workspace for
hybrid computing environments. In Proceedings of CHI’99, pp.378-385, 1999.

16. Helena Roeber, John Bacus, and Carlo Tomasi. Typing in thin air: the canesta projection
keyboard - a new method of interaction with electronic devices. In CHI ’03 extended
abstracts on Human factors in computing systems, pages 712–713. ACM Press, 2003.

17. N. A. Streitz, J. Geißler, T. Holmer, S. Konomi, C. Müller-Tomfelde, W. Reischl,
P. Rexroth, P. Seitz, and R. Steinmetz. i-land: An interactive landscape for creativitiy and
innovation. ACM Conference on Human Factors in Computing Systems, 1999.

18. N. A. Streitz, C. Röcker, Th. Prante, R. Stenzel, and D. van Alphen. Situated interaction
with ambient information: Facilitating awareness and communication in ubiquitous work
environments. In Tenth International Conference on Human-Computer Interaction, June
2003.

19. Zs. Szalavári and M. Gervautz. The personal interaction panel - a two-handed interface
for augmented reality. In Proceedings of EUROGRAPHICS’97, Budapest, Hungary,
September 1997.

20. N. Takao, J. Shi, , and S. Baker. Tele-graffiti: A camera-projector based remote sketching
system with hand-based user interface and automatic session summarization.
International Journal of Computer Vision, 53(2):115–133, July 2003.

21. J. Underkofflerand B. Ullmer and H. Ishii. Emancipated pixels: Real-world graphics in
the luminous room. In Proceedings of ACM SIGGRAPH, pages 385–392, 1999.

22. F. Vernier, N. Lesh, and C. Shen. Visualization techniques for circular tabletop
interfaces. In Advanced Visual Interfaces, 2002.

Spatial Control of Interactive Surfaces in an Augmented Environment 243

23. S.A. Voida, E.D. Mynatt, B. MacIntyre, and G. Corso. Integrating virtual and physical
context to support knowledge workers. In Proceedings of Pervasive Computing
Conference. IEEE Computer Society Press, 2002.

24. P. Wellner. The digitaldesk calculator: Tactile manipulation on a desk top display. In
ACM Symposium on User Interface Software and Technology, pages 27–33, 1991.

25. R. Yang and G. Welch. Automatic and continuous projector display surface calibration
using every-day imagery. In CECG’01.

Discussion

[Joaquim Jorge] Could you give some details on the finger tracking. Do you use color
information?

[Stanislaw Borkowski] We do not track fingers, but detect their presence
over projected buttons. The detection is based on measurements of the
perceived luminance over a widget. Our projected widgets are robust to
accidental full-occlusions and change of ambient light conditions. However,
since we do not use any background model, our widgets work less reliably if
they are projected on surfaces with color intensity that is similar to the color
of user’s fingers.

[Nick Graham] You said you want to perform user studies to validate your approach.
What is the hypothesis you wish to validate?

[Stanislaw Borkowski] What we would like to validate is our claim that a
sensor-centric environment model enhanced with contextual cues is easier to
interpret by humans than a symbolic representation of the environment (such
as a 2D map).

[Fabio Paterno] Why don’t you use hand pointing instead of laser pointing for display
control?

[Stanislaw Borkowski] There are two reasons: First, laser pointing is more
precise, which is important for fine tuning the display position. Second, is
the issue of privacy. Using hand pointing requires constant observation of
the user, and I am not sure whether everyone would feel comfortable with
that.

[Fabio] there are so many cameras!
[Stanislaw Borkowski] Yes, but when using our system the user is not
necessary aware of presence of those cameras. In contrary, using hand-
pointing interaction user would have to make some kind of a “waving” sign
to one of the cameras to initialize the interaction.

[Rick Kazman] Your interaction is relatively impoverished. Have you considered
integrating voice command to give richer interaction possibilities?

[Stanislaw Borkowski] Not really, because we would encounter the problem
of how to verbally explain to the system our requests.

[Rick Kazman] I was thinking more of using voice to augment the interaction, to pass
you into specific modes for example, or to enable multimodal interaction (e.g. “put
that there”).

244 S. Borkowski, J. Letessier, and J.L. Crowley

[Stanislaw Borkowski] Yes, that is a good idea. We should look into it. Right
now we need to add a button to the interface which might obscure part of the
interface. So in that case voice could be useful.

[Michael Harrison] What would be a good application for this type of system?
[Stanislaw Borkowski] An example could be a project-meeting, which has to
split into to working subgroups. They could send a copy of their presentation
on which they work to another surface. This surface could be even in a
different room. Another application could be for a collaborative document
editing. In this situation users could pass the UI between each other and thus
pass the leadership of the group. This could help to structure the work of the
group.

[Philippe Palanque] Do you have an interaction technique for setting the focus of the
video projector?

[Stanislaw Borkowski] The focus should be set automatically, so there is no
need for such interaction. We plan to feed the focus lens of the projector to
the auto-focus of the camera mounted on the SCP.

[Helmut Stiegler] You don’t need perfectly planar surfaces. The surface becomes
“planer” by “augmentation”.

[Stanislaw Borkowski] That is true, but it would become more complicated
to implement the same features on non-planar interfaces. The problem of
projection on non-planar surfaces is that the appearance of the projected
image depends on the point of view.

[Eric Schol] How is ambiguity solved in touching multiple projected buttons at the
same time? Such situation appears when you reach to a button that is farther from the
user than some other buttons.

[Stanislaw Borkowski] The accidental occlusion of buttons that are close to
the user is not a problem since our widgets “react” only on partial occlusion.

[Pierre Dragicevic] Did you think about using color information during model
acquisition phase? This might be useful for choosing the support-surface for the
screen, only from surfaces that are light-colored. You could also use such information
to correct colors of the projected image.

[Stanislaw Borkowski] Yes, of course I though about it. This is an important
feature of surfaces, since the color of the surface on which we project can
influence the appearance of the projection. At this stage of development we
did not really addressed this issue yet.

[Joerg Roth] Usually users press buttons quickly with a certain force. Your system
requires a finger to reside in the button area for a certain time. Get users used to this
different kind of interacting with a button?

[Stanislaw Borkowski] To answer your question I would have to perform
user studies on this subject. From my experience and the experience of my
colleagues who tried our system, using projected buttons is quite natural and
easy. We did not encounter problems with using projected buttons.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 245-252, 2005.
 IFIP International Federation for Information Processing 2005

Manipulating Vibro-Tactile Sequences on Mobile PC

Grigori Evreinov, Tatiana Evreinova, and Roope Raisamo

TAUCHI Computer-Human Interaction Unit
Department of Computer Sciences

FIN-33014 University of Tampere, Finland
+358 3 215 8549

{grse, e_tg, rr}@cs.uta.fi

Abstract. Tactile memory is the crucial factor in coding and transfer of the
semantic information through a single vibrator. While some simulators can
produce strong vibro-tactile sensations, discrimination of several tactile patterns
can remain quite poor. Currently used actuators, such as shaking motor, have
also technological and methodological restrictions. We designed a vibro-tactile
pen and software to create tactons and semantic sequences of vibro-tactile
patterns on mobile devices (iPAQ pocket PC). We proposed special games and
techniques to simplify learning and manipulating vibro-tactile patterns. The
technique for manipulating vibro-tactile sequences is based on gesture
recognition and spatial-temporal mapping for imaging vibro-tactile signals.
After training, the tactons could be used as awareness cues or the system of
non-verbal communication signals.

1 Introduction

Many researchers suppose that the dynamic range for the tactile analyzer is narrow in
comparison to visual and auditory ones. This fact is explained by the complex
interactions between vibro-tactile stimuli, which are in spatial-temporary affinity.
This has resulted in a fairly conservative approach to the design of the tactile display
techniques. However, some physiological studies [1] have shown that a number of
possible “descriptions” (states) of an afferent flow during stimulation of the tactile
receptors tend to have a greater amount of the definite levels than it was previously
observed, that is more than 125. The restrictions of the human touch mostly depend
on imaging techniques used, that is, spatial-temporal mapping and parameters of the
input signals. As opposed to static spatial coding such as Braille or tactile diagrams,
tactile memory is the crucial factor affecting perception of the dynamical signals
similar to Vibratese language [7], [9].

Many different kinds of devices with embedded vibro-tactile actuators have
appeared during the last two years. There is a stable interest to use vibration in games
including small-size wearable devices like personal digital assistants and phones [2],
[3], [14]. The combination of small size and low weight, low power consumption and
noise, and human ability to feel vibration when the hearing and vision occupied by
other tasks or have some lacks, makes vibration actuators ideal for mobile
applications [4], [10].

246 G. Evreinov, T. Evreinova, and R. Raisamo

On the other hand, the absence of the tactile markers makes almost impossible for
visually impaired users interaction with touchscreen. Visual imaging is dominant for
touchscreen and requires a definite size of virtual buttons or widgets to directly
manipulate them by the finger. Among recent projects, it is necessary to mention the
works of Nashel and Razzaque [11], Fukumoto and Sugimura [6] and Poupyrev et al
[12]. The authors propose using different kinds of the small actuators such as
piezoceramic bending motor [6], [12] or shaking motor [11] attached to a touch panel
or mounted on PDA.

If the actuator is placed just under the touch panel, the vibration should be sensed
directly at the fingertip. However, fingertip interaction has a limited contact duration,
as the finger occupies an essential space for imaging. In a case of blind finger
manipulations, a gesture technique becomes more efficient than absolute pointing
when making use of the specific layout of software buttons. A small touch space and
irregular spreading of vibration across touchscreen require another solution. If the
actuator is placed on the backside of the mobile device, vibration could be sensed at
the palm holding the unit. In this case, the mass of the PDA is crucial and impacts
onto spectrum of playback signals [4], [6].

From time to time vibro-tactile feedback has been added to a pen input device [13].
We have also implemented several prototypes of the pen having embedded shaking
motor and the solenoid-type actuator. However, shaking motor has a better ratio of the
torque to power consumption in a range of 3 – 500 Hz than a solenoid-type actuator.
The vibro-tactile pen certainly has the following benefits:

 the contact with the fingers is permanent and has more touch surface, as a rule,
two fingertips tightly coupled to the pen;
 the pen has smaller weight and vibration is easily spread along this unit, it
provides the user with a reliable feeling of different frequencies;
 the construction of the pen is flexible and admits installation of several actuators
which have a local power source;
 the connection to mobile unit can be provided through a serial port or Bluetooth,
that is, the main unit does not require any modification.

Finally, finger grasping provides a better precision compared with hand grasping
[5]. Based on vibro-tactile pen we developed a special technique for imaging and
intuitive interacting through vibration patterns. Simple games allow to facilitate
learning or usability testing of the system of the tactons that might be used like
awareness cues or non-verbal communication signals.

2 Vibro-Tactile Pen

The prototype of vibro-tactile pen consists of a miniature DC motor with a stopped
rotor (shaking motor), electronic switch (NDS9959 MOSFET) and battery having the
voltage of 3 V. It is possible to use internal battery of iPAQ, as an effective current
can be restricted to 300 mA at 6 V. Both the general view and some internal design
features of the pen are shown in Fig. 1.

There are only two control commands to start and stop the motor rotation.
Therefore, to shape an appropriate vibration pattern, we need to combine the pulses of
the current and the pauses with definite duration. Duration of the pulses can slightly

Manipulating Vibro-Tactile Sequences on Mobile PC 247

change the power of the mechanical moment (a torque). The frequency will mostly be
determined by duration of the pauses.

Fig. 1. Vibro-tactile pen: general view and schematics.

We used the cradle connector of Compaq iPAQ pocket PC which supports RS-232
and USB input/output signals. In particularly, DTR or/and RTS signals can be used to
realize the motor control.

The software to create vibro-tactile patterns was written in Microsoft eMbedded
Visual Basic 3.0. This program allows shaping some number of vibro-tactile patterns.
Each of the tactons is composed of two sequential serial bursts with different
frequency of the pulses. Such a technique based on contrast presentation of two well-
differentiated stimuli of the same modality facilitates shaping the perceptual imprint
of the vibro-tactile pattern. The number of bursts could be increased, but duration of
the tacton shall be reasonable and shall not exceed 2 s. Durations of the pulses and
pauses are setting in milliseconds. Number of pulses determines the duration of each
burst. Thus, if the pattern consists of 10 pulses having frequency of 47.6 Hz (1+20
ms) and 10 pulses having frequency of 11.8 Hz, (5+80 ms) vibro-tactile pattern has
the length of 1060 ms. All patterns are stored in the resource file “TPattern.txt” that
can be loaded by the game or another application having special procedures to decode
the description into output signals of the serial port according the script.

3 Method for Learning Vibro-Tactile Signals

Fingertip sensitivity is extremely important for some categories of physically
challenged people such as the profoundly deaf, hard-of-hearing people and people
who have low vision. We can find diverse advises how to increase skin sensitivity.
For instance, Stephen Hampton in “Secrets of Lock Picking” [8] described a special
procedure and the exercises to develop a delicate touch.

Sometimes, only sensitivity is not enough to remember and recognize vibration
patterns and their combinations, especially when the number of the tactons is more

holder

3

248 G. Evreinov, T. Evreinova, and R. Raisamo

than five. While high skin sensitivity can produce strong sensation, the discrimination
of several tactile stimuli can remain quite poor. The duration of remembering tactile
pattern depends on many factors which would include personal experience, making of
the individual perceptive strategy, and the imaging system of alternative signals [7].

Fig. 2. Three levels of the game “Locks and Burglars”.

We propose special games and techniques to facilitate learning and manipulation
by vibration patterns. The static scripts have own dynamics and provoke the player to
make an individual strategy and mobilize perceptive skills. Let us consider a version
of the game for the users having a normal vision.

The goal of the “Burglar” is to investigate and memorize the lock prototype to
open it as fast as possible. There are three levels of difficulty and two phases of the
game on each level. In the “training” mode (the first phase), the player can touch the
lock as many times as s/he needs. After remembering tactons and their position, the
player starts the game. By clicking on the label “Start”, which is visible in training
phase, the game starts and the key will appear (Fig. 2). The player has the key in hand
and can touch it as many times as s/he needs. That is a chance to check the memory.

After player found known tactons and could suppose in which position of the lock
button s/he had detected these vibrations before, it is possible to click once the lock
button. If the vibration pattern of the button coincides with corresponding tacton of
the key piece, the lock will have a yellow shine. In a wrong case, a shine will be red.
Repeated pressing of the corresponding position is also being considered as an error.

There is a restricted number of errors on the each level of the game: single, four
and six allowed errors. We assumed that 15 s per tacton is enough to pass the third
level therefore the game time was restricted to 2.5 minutes. That conditions a
selection of the strategy and improves learnability. After the player did not admit the
errors at all the levels, the group of tactons could be replaced. Different groups
comprising nine tactons allow learning whole vibro-tactile alphabet (27 tokens)
sequentially.

All the data, times and number of repetitions per tacton, in training phase and
during the game are automatically collected and stored in a log file. Thus, we can
estimate which of the patterns are more difficult to remember and if these tactons are
equally hard for all the players, their structure could be changed.

Manipulating Vibro-Tactile Sequences on Mobile PC 249

Graphic features for imaging, such as numbering or positioning (central, corners)
lock buttons, different heights of the key pieces, and “binary construction” of the
tactons, each tacton being composed of the two serial bursts of the pulses, should
facilitate remembering spatial-temporal relations of the complex signals in the
proposed system.

Another approach was developed to support blind interaction with tactile patterns,
as the attentional competition between modalities often disturbs or suppresses weak
differences of the tactile stimuli. The technique for blind interaction has several
features. Screenshot of the game for non-visual interaction is shown in Fig. 3. There
are four absolute positions for the buttons “Repeat”, “Start” and two buttons are
controlling the number of the tactons and the amount of the tactons within a playback
sequence. Speech remarks support each change of the button state.

Fig. 3. The version of the game for blind player.

When blindfolded player should investigate and memorize the lock, s/he can make
gestures along eight directions each time when it is necessary to activate the lock
button or mark once the tacton by gesture and press down the button “Repeat” as
many times as needed. The middle button switches the mode of repetition. Three or
all the tactons can be played starting from the first, the fourth or the seventh position
pointed by the last gesture.

Spatial-temporal mapping for vibro-tactile imaging is shown in Fig. 4. Playback
duration for the groups consisting of 3, 6 or 9 tactons can reach 3.5 s, 7.2 s or 11 s
including earcon to mark the end of the sequence. This parameter is important and
could be improved when stronger tactile feedback could be provided with actuator
attached to the stylus directly under the finger. In practice, only the sequence
consisting of three tactons facilitates recognizing and remembering a sequence of the
tactile patterns.

adaptive button

the mode: the number of tactons
in the sequence

 tacton’s number

track of the stylus

250 G. Evreinov, T. Evreinova, and R. Raisamo

Fig. 4. Spatial-temporal mapping for vibro-tactile imaging: T1 = 60 ms, T2 = 1100 ms, T3 =
300 ms.

To recognize gestures we used the metaphor of the adaptive button. When the
player touches the screen, the square shape (Fig. 3) automatically changes position
and finger or stylus occurs in the center of the shape. After the motion was realized
(sliding and lifting the stylus), the corresponding direction or the button position of
the lock will be counted and the tacton will be activated.

The button that appears on the second game phase in the bottom right position
activates the tactons of the virtual key. At this phase, the middle button switches
number of tactons of the key in a playback sequence. However, to select the button of
the lock by gesture the player should point before what key piece s/he wishes to use.
That is, the mode for playback of a single tacton should be activated. The absolute
positions of software buttons do not require additional markers.

4 Evaluation of the Method and Pilot Results

The preliminary evaluation with able-bodied staff and students took place in the
Department of Computer Sciences University of Tampere. The data were captured
using the version of the game “Locks and Burglars” for deaf players. The data were
collected concerning 190 trials in a total, of 18 players (Table 1). Despite of the fact,
that the tactons have had low vibration frequencies of 47.6 Hz and 11.8 Hz, we cannot
exclude an acoustic effect, as the players had a normal hearing. Therefore, we can just
summarize general considerations regarding the difficulties in which game resulted
and overall average results.

Table 1. The preliminary average results.

Level
(tactons) Trials

Selection
time

per tacton

Total
selection time

Repeats
per tacton

Err,
%

1 (3) 48 3.8 s 12.4 s 4-7 7.7
2 (6) 123 3.4 s 16.8 s 3-13 13.3
3 (9) 19 1.7-11 s 47.3 s 4-35 55.6

1 2 3
4 5 6
7 8 9 Ti

Repe

T

T

T

Manipulating Vibro-Tactile Sequences on Mobile PC 251

The first level of the game is simple as memorizing of 2 out of 3 patterns is enough
to complete the task. The selection time (decision-making and pointing the lock
button after receiving tactile feedback in corresponding piece of the key) in this level
did not exceed 3.8 s per tacton or 12.4 s to find matching of 3 tactons. The number of
the repetitions to memorize 3 patterns was low, about 4 - 7 repetitions per tacton. The
error rate (Err) was 7.7%. The error rate was counted as follows:

%100
][][

]_[
tactonstrials

selectionswrongErr . (2)

The second level of the game (memorizing six tactons) was also not very difficult.
An average time of the selection per tacton was about 3.4 s and 16.8 s in a total to find
matching of six tactons. The number of the repetitions to memorize six patterns was
varied from 3 to 13 repetitions per tacton. However, the error rate increased up to
13.3%, it is also possible due to the allowed number of errors (4).

The third level (nine tactons for memorizing) was too difficult and only three of 19
trials had finished by the win. The average time of the selection has been changed
from 1.7 s up to 11 s per tacton and reached 47.3 s to find matching of nine tactons.
While a selection time was about 30% of the entire time of the game, decision-making
occupied much more time and players lost a case mostly due to limited time. The
number of repetitions to memorize nine patterns in training phase varied significantly,
from 4 up to 35 repetitions per tacton. Thus, we can conclude that nine tactons require
of a special strategy to facilitate memorizing. However, the playback mode of the
groups of vibro-tactile patterns was not used in the tested version. The error rate was
too high (55.6%) due to the allowed number of errors (6) and, probably, because of
the small tactile experience of the players.

The blind version of the game was briefly evaluated and showed a good potential
to play and manipulate by vibro-tactile patterns even in the case when audio feedback
was absent. That is, the proposed approach and the tools implemented provide the
basis for learning and reading of the complex semantic sequences composed of six
and more vibro-tactile patterns.

5 Conclusion

We designed a vibro-tactile pen and software intended to create tactons and semantic
sequences consisting of the vibro-tactile patterns on mobile devices (iPAQ pocket
PC). Tactile memory is the major restriction for designing a vibro-tactile alphabet for
the hearing impaired people. We proposed special games and techniques to facilitate
learning of the vibro-tactile patterns and manipulating by them. Spatial-temporal
mapping for imaging vibro-tactile signals has a potential for future development and
detailed investigation of the human perception of the long semantic sequences
composed of tactons. After training, the tactons can be used as a system of non-verbal
communication signals.

252 G. Evreinov, T. Evreinova, and R. Raisamo

Acknowledgments

This work was financially supported by the Academy of Finland (grant 200761), and
by the Nordic Development Centre for Rehabilitation Technology (NUH).

References

1. Antonets, V.A., Zeveke, A.V., Malysheva, G.I.: Possibility of synthesis of an additional
sensory channel in a man-machine system. Sensory Systems, 6(4), (1992) 100-102

2. Blind Games Software Development Project. http://www.cs.unc.edu/Research/assist/et/
projects/blind_games/

3. Cell Phones and PDAs. http://www.immersion.com/consumer_electronics/
4. Chang, A., O'Modhrain, S., Jacob, R., Gunther, E., Ishii, H.: ComTouch: Design of a

Vibrotactile Communication Device. In: Proceedings of DIS02, ACM (2002) 312-320
5. Cutkosky, M.R., Howe, R.D.: Human Grasp Choice and Robotic Grasp Analysis. In S.T.

Venkataraman and T. Iberall (Eds.), Dextrous Robot Hands, Springer-Verlag, New York
(1990), 5 –31

6. Fukumoto, M. and Sugimura, T.: Active Click: Tactile Feedback for Touch Panels. In:
Proceedings of CHI 2001, Interactive Posters, ACM (2001) 121-122

7. Geldard, F.: Adventures in tactile literacy. American Psychologist, 12 (1957) 115-124
8. Hampton, S.: Secrets of Lock Picking. Paladin Press, 1987
9. Hong Z. Tan and Pentland, A.: Tactual Displays for Sensory Substitution and Wearable

Computers. In: Woodrow, B. and Caudell, Th. (eds), Fundamentals of Wearable Computers
and Augmented Reality, Mahwah, Lawrence Erlbaum Associates (2001) 579-598

10. Michitaka Hirose and Tomohiro Amemiya: Wearable Finger-Braille Interface for
Navigation of Deaf-Blind in Ubiquitous Barrier-Free Space. In: Proceedings of the HCI
International 2003, Lawrence Erlbaum Associates, V4, (2003) 1417-1421

11. Nashel, A. and Razzaque, S.: Tactile Virtual Buttons for Mobile Devices. In: Proceedings
of CHI 2003, ACM (2003) 854-855

12. Poupyrev, I., Maruyama, S. and Rekimoto, J.: Ambient Touch: Designing Tactile Interfaces
for Handheld Devices. In: Proceedings of UIST 2002, ACM (2002) 51-60

13. Tactylus tm http://viswiz.imk.fraunhofer.de/~kruijff/research.html
14. Vibration Fuser for the Sony Ericsson P800. http://support.appforge.com/

Discussion

[Fabio Paterno] I think that in the example you showed for blind users a solution
based on screen readers would be easier than the one you presented based on vibro-
tactile techniques.

[Grigori Evreinov] A screen reader solution would not be useful for deaf and
blind-deaf users.

[Eric Schol] Did you investigate the use of force-feedback joystick ?

[Grigori Evreinov] Yes, among many other devices ; like force-feedback
mouse, etc. But main goal of the research was the application (game), not the
device

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 253-270, 2005.
 IFIP International Federation for Information Processing 2005

Formalising an Understanding of User-System Misfits

Ann Blandford1, Thomas R.G. Green2 and Iain Connell1

1 UCL Interaction Centre, University College London, Remax House, 31-32 Alfred Place
London WC1E 7DP, U.K.

{A.Blandford,I.Connell}@ucl.ac.uk
http://www.uclic.ucl.ac.uk/annb/

2 University of Leeds, U.K.

Abstract. Many of the difficulties users experience when working with
interactive systems arise from misfits between the user’s conceptualisation of
the domain and device with which they are working and the conceptualisation
implemented within those systems. We report an analytical technique called
CASSM (Concept-based Analysis for Surface and Structural Misfits) in which
such misfits can be formally represented to assist in understanding, describing
and reasoning about them. CASSM draws on the framework of Cognitive
Dimensions (CDs) in which many types of misfit were classified and presented
descriptively, with illustrative examples. CASSM allows precise definitions of
many of the CDs, expressed in terms of entities, attributes, actions and
relationships. These definitions have been implemented in Cassata, a tool for
automated analysis of misfits, which we introduce and describe in some detail.

1 Introduction

Two kinds of approach have dominated traditional work in usability of interactive
systems: heuristic (or checklist-based) approaches giving a swift assessment of look-
and-feel (usually independent of the tasks the system is designed to support), such as
Heuristic Evaluation [17]; and procedure-based approaches for assessing the
difficulty of each step of typical user tasks, such as Cognitive Walkthrough [20].

We present a technique based on a third approach, the analysis of conceptual
misfits between the way the user thinks and the representation implemented within the
system. Such misfits pertain to the concepts and relationships the user is manipulating
in their work. Some misfits are surface-level – for example, users may work with
concepts that are not directly represented within the system; conversely, users may be
required to discover and utilise system concepts that are irrelevant to their conceptual
models. Other misfits are structural, emerging only when the user manipulates the
structure of some representation and finds that changes that are conceptually simple
are, in practice, difficult to achieve.

We outline an approach to usability evaluation called Concept-based Analysis of
Surface and Structural Misfits (CASSM), and present Cassata, a prototype analysis
tool that supports the analyst in identifying misfits. As will become apparent, in
CASSM structural misfits are not analysed directly in terms of the procedures that
users follow to make a change, as might happen using a procedural approach; instead,

254 A. Blandford, T.R.G. Green, and I. Connell

CASSM identifies which elements of a structure are and are not accessible to a user
and amenable to direct modification, thereby deriving warnings of potential misfits.

1.1 Misfits and Their Analysis

Many approaches to usability evaluation, including work in the previously-mentioned
traditions of heuristic and procedure-based analysis, have generated lists of specific
user problems with a given design, but have failed to impose any structure on the lists.
Each user difficulty that is spotted is a thing in itself. From one occurrence we learn
nothing about how to predict further occurrences, nor how to improve design practice.

CASSM builds on the approach known as the ‘Cognitive Dimensions of Notations’
framework (CDs) [3,4,14,15], in which some important classes of structural misfits
have been articulated and described. For example, ‘viscosity’ describes the ‘degree of
resistance to small changes’: in a viscous system, something is more difficult to
change than it should be – a single conceptual action demands several device actions.
An example would be adding a new figure near the beginning of a document then
having to increment all subsequent figure numbers and within-text references to those
numbers: some word processing applications explicitly support this activity but most
do not, making it very repetitive. Viscosity may be a serious impediment to the user’s
task or it may be irrelevant to that task, if for instance the user is searching for a target
but not trying to make a change; the CDs framework therefore distinguishes types of
user activity and offers a conjecture as to how each dimension affects each activity.

The Cognitive Dimensions framework as originally created [12] was intended to
promote quick, broad-brush evaluation, giving non-specialists a usability evaluation
technique that was based on cognitive analysis yet required no expertise from the
analyst. It relied purely on definition by example. To a degree this was successful.
The idea of viscosity is intuitively appealing; examples can illustrate the idea; and a
vocabulary of such ideas can be used to support discourse and reasoning about
features of a design, with a view to improving that design [3]. However, despite the
development of a CDs tutorial [14], and a questionnaire-based evaluation tool [2],
potential users have found that they need to learn too many concepts and that those
concepts are not defined closely enough to avoid disagreement over the final analysis.

More than one attempt has been made to sharpen the definitions of CDs [11,19] but
those attempts have lost the feel of quick, broad-brush evaluation, making them
unappealing to the intended user, the non-specialist analyst.

In this paper, we show that several CDs and related user–system misfits can be
represented reasonably faithfully in a form that better preserves the original quick-
and-dirty appeal of CDs. With these definitions, not only are the misfit notions
clarified, but it becomes possible for potential misfit occurrences to be automatically
identified within Cassata, the tool that we shall describe below.

It must be kept in mind throughout that our form of analysis can only describe
potential user problems. Whether a particular misfit causes real difficulties will
depend on circumstances that are not described here.

Formalising an Understanding of User-System Misfits 255

2 CASSM and Cassata: A Brief Introduction

CASSM is a usability evaluation technique that focuses on the misfits between user
and device. It was formerly known as Ontological Sketch Modelling (OSM [10]),
because the approach involves constructing a partial (Sketchy) representation (Model)
of the essential elements (Ontology) of a user–system interaction; the name has
recently been changed to reflect a shift of focus towards the two types of misfits
rather than the ontology representation.

CASSM developed from our earlier work on Entity Relationship Modelling of
Information Artifacts (ERMIA [11]) and Programmable User Modelling (PUM [8]). It
has also been informed by the work of others on what could broadly be termed misfit
analysis, such as Moran’s External Task Internal Task (ETIT) analysis [16] and
Payne’s Yoked State Spaces [18]. The basis of CASSM is to compare the concepts
that users are working with (identified by an appropriate data gathering technique
such as interviews, think-aloud protocols or Contextual Inquiry [1]) with the concepts
implemented within the system and interface (identified by reference to sources such
as system documentation or an existing implementation). Conceptual analysis
involves identifying the concepts users are working with, drawing out commonalities
across similar users (see for example [7]) to create the profile of a typical user of a
particular type,; the analyst can then assess the quality of fit between user and system.
As analysis proceeds, the analyst will start to distinguish between entities and
attributes (as defined below), and to consider what actions the user can take to change
the state of the system. Finally, for a thorough analysis, various relationships between
concepts are enumerated to identify structural misfits. Each of these stages of misfit
analysis is discussed in more detail below.

To support analysis, a demonstrator tool called Cassata is under development.
Screen shots included in this paper are taken from version 2.1 of the tool. (Version 3
can be downloaded from the project web page [9].) The tool has provided a focus for
developing the precise definitions of misfits included in this paper, and also a means
of testing those definitions against a repertoire of examples that have previously been
discussed informally.

Figure 1 shows the Cassata window for a partial description of a word processor
document. For clarity, the picture is cropped from the right. This particular
description is discussed in more detail in section 4.1; here we simply outline its main
features.

It is a description of a set of figures (pictures or diagrams) in a document, which
consists of one or more individual figures. For the user, there is the important idea
that the figures should be sequentially numbered – so the number-sequence is
important, and is an attribute of the set-of-figs. Each figure has an attribute which is
its particular number, and changing a figure number changes the overall sequence of
figure numbers.

256 A. Blandford, T.R.G. Green, and I. Connell

Fig. 1. Cassata data table for a partial description of a document. The upper table describes
concepts (i.e. entities and their attributes); the lower describes relationships between those
concepts.

The top half of the window shows information about concepts (entities such as
figure and attributes such as number): for each concept, three columns show whether
it is present, difficult or absent for the user, interface and system respectively; the next
two columns show how easy it is to set or change the value of an attribute, or to create
or delete an entity; the final column is a notes area in which the analyst can add
comments. To take the first row as an example: the set-of-figs is a conceptual
entity that is meaningful to the user, is not clearly represented at the interface
(‘difficult’) and absent from the underlying system model. It is easy to create a set of
figures, (because this happens automatically as the user adds figures) but harder to
delete it (done indirectly because that requires deleting all the individual figures).

The bottom half of the window shows information about relationships (such as
affects and consists_of) between concepts. In this particular case, the two lines of
input state that changing any number (of a figure) affects the number-sequence (of the
set-of-figs) and that a set-of-figs consists of (many) figures.

Having briefly presented the background to CASSM and Cassata, we now focus in
more detail on the definitions of various kinds of misfits.

3 Surface Misfits

Surface misfits are those that become apparent without considering the details of
structural representations within the system and how those representations are
changed. Within ‘surface’, there are three levels of misfit: just identifying system and
user concepts, with little reference to the interface between the two (section 3.1);
more detailed analysis in terms of how well each concept is represented by the user,

Formalising an Understanding of User-System Misfits 257

interface and system (section 3.2); and analysis in terms of what actions are needed to
change the system, and whether there are problems with actions (section 3.3).

3.1 Level 1: Misfits Between the User and the System

Misfits between user and system are probably the most important surface-level
misfits. There are three important cases: user concepts that are not represented within
the system; system concepts that are inaccessible to the user; and situations where a
user concept and a system concept are similar but not identical.

User concepts that are not represented within the system cannot be directly
manipulated by the user. The set-of-figs discussed above is an example of such a
concept. Other examples are using a field in an electronic form to code information
for which that form was not actually designed, or keeping paper notes alongside an
electronic system to capture information that the system does not accept.

Unrepresented concepts are often the most costly form of misfit; they may force
users to introduce workarounds, as users are unable to express exactly what they need
to, and must therefore use the system in a way it was not designed for. They
sometimes result in structural misfits such as viscosity, as described below.

System concepts that are not immediately available to the user need to be learned.
At a trivial level, these might include strictly device-related concepts like scroll-bars,
which may be simple to use but nevertheless need to be learnt. A slightly more
complex example is the apparatus of layers, channels and masks found in many
graphics applications – these can cause substantial user difficulties, particularly for
novice users.

For users, these misfits may involve no more than learning a new concept, or they
may require the users’ constant attention to the state of something that has little
significance to them, such as the amount of free memory.

User- and system concepts that are similar but non-identical, and which are often
referred to by the same terms, can cause more serious difficulties. One example in the
domain of diaries is the idea of a ‘meeting’. When a user talks about a meeting, they
usually mean a pre-arranged gathering of particular individuals at an agreed location
with a particular broad purpose (and perhaps a detailed agenda). Within some shared
diary systems, a meeting has a much more precise definition, referring to an event
about which only other users of the same shared diary system can be kept fully
informed, and which has a precise start time and precise finishing time, and possibly a
precise location. The difference between these concepts is small but significant [5].

Another example, within the domain of ambulance dispatch, is the difference
between a call and an incident. A particular system we studied processed information
strictly in terms of calls, whereas staff dealt with incidents (about which there may be
one or many calls); this was difficult to detect initially because the staff referred to
them as ‘calls’ [7], but the failure of the system to integrate information about
difference calls added substantially to staff workload as they processed the more
complex incidents.

258 A. Blandford, T.R.G. Green, and I. Connell

These misfits may cause difficulties because the user has to constantly map their
natural understanding of the concept onto the one represented within the system,
which may have a subtly different set of attributes.

3.2 Level 2: Adding Interface Considerations

The second level starts to draw out issues concerning the interface between user and
system. For each of user, interface and system, a concept may be present, difficult or
absent.

In all cases, present means clearly represented and absent means not represented.
We assume that underlying system concepts are either present or absent, whereas for
the user or at the interface there are concepts that are present but difficult in some
way.

For users, difficult concepts are most commonly ones that are implicit– ideas they
are aware of if asked but not ones they expect to work with. An example would be the
end time of a meeting in the diary system mentioned above: if one looks at people’s
paper diaries, one finds that many engagements have start times (though these are
often flagged as approximate – e.g. ‘2ish’) but few have end times, whereas electronic
diaries require every event to have an end time. This forces users to make explicit
information that they might not choose to. Another source of difficulty might be that
the user has to learn the concept.

Similarly, there are various reasons why a concept may be represented at the
interface but in a way that makes it difficult to work with. Difficulties that interface
objects may present include:
� Disguised: represented, but hard to interpret;
� Delayed: represented, but not available to the user until some time later in the

interaction;
� Hidden: represented, but the user has to perform an explicit action to reveal the

state of the entity or attribute; or
� Undiscoverable: represented only to the user who has good system knowledge, but

unlikely to be discovered by most users.
Which of these apply in any particular case – i.e. why the interface object might

cause user difficulties – is a further level of detail that can be annotated by the
analyst; for the sake of simplicity, this additional level of detail is not explicitly
represented within Cassata.

At the simplest level, anything that is difficult or absent represents a misfit that
might cause user difficulties. As discussed above, concepts that are difficult or absent
for the user are ones that need to be learnt and worked with; how much difficulty
these actually pose will depend on the interface representation. Conversely, concepts
that are present for the user but absent from the underlying system will force the user
to find work-arounds. In addition, as discussed above, poor interface representations
are a further source of difficulty that is not considered at level 1.

Formalising an Understanding of User-System Misfits 259

3.3 Level 3: Considering Actions

At levels 1 and 2, we have referred to ‘concepts’ without it being necessary to
distinguish between them. For deeper analysis, it becomes necessary to distinguish
between entities and attributes. A description in terms of entities and attributes is
illustrated in the screen-shot from the Cassata tool shown in Figure 1 (above). There,
we used the terms ‘entity’ and ‘attribute’ without precisely defining them.

An entity is a concept that can be created or deleted, or that has attributes which the
analyst wants to enumerate. In figure 1, entities are shown in the left-hand column,
left-justified. Note also the ‘E’ in the left margin.

An attribute is a property of an entity. In Figure 1, attributes are shown right-
justified in the left-hand column. Note also the ‘A’ in the left margin. Attributes can
be set (‘S/C’) or changed (‘C/D’).

For economy of space, the same columns are used to define how easy it is to create
(‘S/C’) or delete (‘C/D’) entities. Each of these actions can be described as follows:

� Easy: no user difficulties.
� Hard: difficult for some reason (e.g. undiscoverable action, moded action,

delayed effect of action). For example, it is possible to select a sentence in MS
Word by pressing the control key (‘apple’ key on a Mac) and clicking anywhere
in the sentence; few users are aware of this.

� Indirect: effect has to be achieved by changing something else in the system; for
example, as discussed above, it is not possible to directly change the sequence
of figure numbers.

� Cant: something that cannot be changed, that the analyst thinks might cause
subsequent user difficulties.

� Fixed: something that cannot be changed, that is not, in fact, problematic; for
example, an entity may be listed simply because it has important attributes that
need to be enumerated or analysed.

� BySys: this denotes aspects of the system that may be changed, but not by the
user (this may include by other agents – e.g. over a network, or simply other
people). Many of these cases are not actually problems, and it is up to the
analyst to consider implications.

Just as describing concepts as ‘present’, ‘absent’ or ‘difficult’ helps to highlight
some conceptual difficulties, so describing actions in terms of ‘easy’, ‘hard’ ,
indirect’, ‘cant’, ‘fixed’ and ‘bySys’ highlights conceptual difficulties in changing the
state of the system.

3.4 Surface-Level Misfits and Their Cognitive Dimensions

We turn now to the use of CASSM to articulate part of the Cognitive Dimensions
framework introduced above, starting with surface-level misfits – notably abstraction
level and visibility.

260 A. Blandford, T.R.G. Green, and I. Connell

Abstraction level: devices may be classed as imposing the use of abstractions
(‘abstraction-hungry’ in Green’s terminology), rejecting the use of abstractions
(‘abstraction-hating’), or allowing but not imposing abstractions (‘abstraction-
neutral’); further, the abstractions themselves may be domain-based or device-based.
CASSM can express these distinctions reasonably well and can therefore detect some
of the misfits, among them:

 domain abstractions that are part of the user’s conceptual but are not
implemented within the device;

 device abstractions imposed upon the user.
Imposed device abstractions have to be learnt in order to work effectively with the
device, such as style sheets or graphics masks, and are therefore easy or difficult to
learn according to how well they are represented at the interface (as discussed above).

Visibility: the user’s ability to view components readily when required, preferably in
juxtaposition to allow comparison between components. CASSM cannot at present
express either inter-item juxtaposability nor the number of search steps required to
bring a required item to view (‘navigability’) but captures the essence of visibility by
designating those concepts that are hidden, disguised, delayed or undiscoverable as
‘difficult’ in the interface representation.

4 Structural Misfits: Taking Account of Relationships

As discussed above, structural misfits refer to the structure of information, and how
the user can change that structure. Here, we present the structural misfits of which we
are currently aware. These are a subset of Green’s Cognitive Dimensions [3]. It is
worth noting that structural misfits only apply to systems where the system state can
be changed in a meaningful way by the user. Thus, systems such as web sites or
vending machines do not generally suffer from structural misfits. However, systems
such as drawing programs, word processors, music composition systems and design
tools are prone to these misfits.

Another point to note is that although structural misfits are much finer-grained than
the bolder surface-level misfits discussed above, they can be immense sources of user
frustration and inefficiency.

Structural misfits depend on relationships that hold within the data. Five kinds of
relationships are currently defined within Cassata. These are: consists_of,
device_constraint, goal_constraint, affects, and maps_onto. As for entities and
attributes, it is possible (though not always necessary) to state how well these
relationships are represented at the interface, to the user, or in the underlying system.

Consists_of takes two arguments, which we call Actor and ActedOn, which are
both concepts. This means that the first consists_of the second: chapter consists_of
paragraphs; set-of-paragraphs consists_of paragraphs (e.g. sharing a paragraph
style); etc.

Device_constraint also takes two arguments, both concepts. The value of Actor
constrains the possible values of ActedOn. For example, considering drawing a
map on the back of an envelope, the starting_position (for drawing) constrains the

Formalising an Understanding of User-System Misfits 261

location of a particular instruction. An easier example is that the field-width for a
data entry field constrains the item-width for any items to be put in that field.

Goal_constraint takes only one argument (ActedOn), which is the concept on
which there is some domain-based constraint. For example, when writing a
conference paper such as this one, it is common to have a limit on the length of a
document.

Affects is concerned with side-effects: that changing the value of one concept
will also change the value of another. For example, changing the number of words
in a document will change its length.

Maps_onto is a simple way of expressing the idea that two concepts are very
similar but not quite identical. These are most commonly a domain-relevant
concept and a device-relevant one. For example, a (user) meeting maps_onto a
(diary-entry) meeting but, depending on the form of the diary, the two meeting
types may have importantly different attributes.

We now consider three important classes of structural misfits: viscosity (section 4.1),
premature commitment (section 4.2) and hidden dependencies (section 4.3). In what
follows, we take A to be an entity of interest with an attribute P, and B to be some
other entity with attribute Q. these are defined in the top window by juxtaposition (i.e.
attributes always appear immediately below the entity to which they pertain).

4.1 Viscosity

As discussed above, “viscosity” captures the idea that a system is difficult to change
in some way. Green [13] distinguished two types of viscosity, repetition and knock-
on, which can be defined as follows.

1) Repetition viscosity occurs when a single action within the user’s conceptual
model requires many, repetitive device actions.

Changing attribute P of entity A, A(P), needs many actions if:
A(P) is not directly modifiable
B(Q) affects A(P)
B(Q) is modifiable
A consists-of B

For example, as discussed above (section 2), we get repetition viscosity on figure
numbers in a document because whenever a figure is added, deleted or moved, a
range of figures need to be re-numbered one by one. Stated more formally:
set-of-figs(number-sequence) is not directly modifiable
figure(number) affects set-of-figs(number-sequence)
figure(number) is modifiable
set-of-figs consists-of figure

Figure 2 shows the basic requirements on a model for it to exhibit Repetition
Viscosity. Note in particular the use of ‘indirect’ to denote something that can be
changed, but not directly. Figure 3 shows the output when this particular model is
assessed by Cassata.

262 A. Blandford, T.R.G. Green, and I. Connell

Fig. 2. Repetition Viscosity.

Repetition Viscosity Check ---- Repetition Viscosity Model

 attribute "Q" affects "P"
 entity "A" consists_of "B"
 "A " owns "P"
 "P " is not directly modifiable
 "B " owns "Q"
 "Q " is directly modifiable

possible case of repetition viscosity:
to change "P" user may have to change all instances of "Q"

Fig. 3. Output from Repetition Viscosity analysis in Cassata.

2) Knock-on viscosity: changing one attribute may lead to the need to adjust other
things to restore the internal consistency. (In North America, a better-known phrase
for the same concept appears to be ‘domino effect’.)

Changing A(P) has possible knock-on if:
A(P) is modifiable
modifying A(P) affects B(Q)
there is a domain constraint on B(Q)

Timetables and schedules typically contain high knock-on viscosity; if one item is
re-scheduled, many others may have to be changed as well.

Figure 4 shows the conditions for a model to exhibit Knock-on Viscosity. Figure 5
shows the output when this model is assessed by Cassata.

P can only be
changed indirectly

Changing Q may
be easy or hard

A ‘owns’ P B ‘owns’ Q

Q affects P

A consists of B

Formalising an Understanding of User-System Misfits 263

Fig. 4. Knock-on Viscosity.

Knock-on Viscosity Check ---- Knock-on Viscosity Model

 attribute "P" affects "Q"
 there is a goal_constraint on "Q"
 "P " is directly modifiable

possible case of knock-on viscosity
modifying "P" may violate a domain constraint for "Q"

Fig. 5. Output from Knock-on Viscosity analysis in Cassata.

4.2 Premature Commitment

Informally, premature commitment occurs when the user has to provide information
to the system earlier than they would wish or are prepared for. We have several sets of
conditions that alert to possible premature commitment.

1) Non-modifiability premature commitment: As discussed above (under actions),
if an attribute cannot be changed after it has been set then the system possibly
demands premature commitment:
A(P) is settable
A(P) is not modifiable

Some painting tools exhibit this type of premature commitment: that the width and
colour of a line cannot be changed once it has been set.

Extending this to entities, we may get potential non-modifiability premature
commitment if entities can be created but not subsequently deleted:

Changing P may
be easy or hard

P affects Q

There is a goal constraint on Q

264 A. Blandford, T.R.G. Green, and I. Connell

A is creatable
A is not deletable

In principle the converse may hold too, but there are few situations in which that
would class as premature commitment (rather than simply an irreversible action).

Figure 6 shows the conditions for a model to exhibit this kind of Premature
Commitment. Figure 7 shows the output when this particular model is assessed by
Cassata.

Fig. 6. Non-modifiability Premature Commitment.

Non-modifiability Premature Commitment ---- test NMPC Model

possible non-modifiable premature commitment:
 entity "create-ent" can be created but not deleted
====

possible non-modifiable premature commitment:
 attribute "set-att" can be set but not changed
====

possible non-modifiable premature commitment:
 entity "delete-ent" can be deleted but not created
====

Fig. 7. Output from Non-modifiability PC analysis in Cassata.

2) Abstraction-based premature commitment: If a user has to define an abstraction
in order to avoid repetition viscosity, and that abstraction has to be defined in
advance, then the system potentially creates abstraction-based premature
commitment. Frequently that abstraction will be a simple grouping. A common
example of potentially premature commitment to abstractions is the defining of
paragraph styles before starting to create a technical document. The purpose is to
avoid repetition viscosity by allowing all paragraphs of one type to be reformatted in
one action, but the problem is to foresee the required definitions. A more technical
example would be the creation of a class hierarchy in object-oriented programming.

The conventional analysis in the Cognitive Dimensions framework is to treat the
abstraction management components of the system as a separate sub-device, which

Conversely, for entities, the ‘cant’ and the ‘easy’ /
‘hard’ can be swapped.

…if
changing
/
deleting

For entity or attribute, setting
/creating can be easy or hard…

Formalising an Understanding of User-System Misfits 265

may have its own properties of viscosity, hidden dependencies, etc [4]. In CASSM we
take a simplified approach such that this type of premature commitment is highlighted
if:
A consists-of B
A(P) is directly modifiable
A(P) affects B(Q)

The paragraph styles case would be represented thus:
Paragraph has attribute style
Set-of-paragraphs has attribute style-description
Set-of-paragraphs consists-of paragraph
Style-description is directly modifiable
Changing style-description causes style to change

Figure 8 shows the basic requirements on a model for it to exhibit Abstraction-
based Premature Commitment. Figure 9 shows the output when this particular model
is assessed by Cassata.

Fig. 8. Abstraction-based premature commitment.

Abstract-based Premature Commitment Check ---- Abstraction-based PC Model

 attribute "P" affects "Q"
 entity "A" consists_of "B"
 "A " owns "P"
 "P " is directly modifiable
 "B " owns "Q"

possible case of abstract-based premature commitment:
need to create an abstraction "A" to change all instances of "Q"

Fig. 9. Output from Abstraction-based PC analysis in Cassata.

Changing P may
be easy or hard

A ‘owns’ P B ‘owns’ Q

P affects Q

A consists of B

266 A. Blandford, T.R.G. Green, and I. Connell

3) Device-constraint premature commitment: Here, setting an attribute of one entity
constrains the way that new instances of another entity can be created:
B(Q) is settable
A(P) is not settable
There is a device constraint between B(Q) and A(P)
It is possible to add more As

As mentioned above (when defining device constraint), one example of this is
drawing a map on the back of an envelope; another is that of setting the field width in
a data structure when the size of all items to be entered in that field is not known
(here, “>=” is an example of a device constraint):
field(width) is settable
item(width) is not settable
field(width)>=item(width)
more items can be added

Figure 10 shows the basic requirements on a model for it to exhibit Device-
constraint Premature Commitment. Figure 11 shows the output when this particular
model is assessed by Cassata.

Fig. 10. Device-constraint premature commitment.

Device-constraint Premature Commitment Check ---- Device-constraint PC Model

 attribute "Q" imposes a device_constraint on "P"
 "Q " can be set but not changed
 "P " cannot be either set or changed
 "A " can be created

possible case of device-constraint premature commitment:
attribute "P" may be constrained by "Q"

Fig. 11. Output from Device-constraint PC analysis in Cassata.

P cannot be set or
changed (‘cant’ or
‘fixed’)

A ‘owns’ P B ‘owns’ Q

There is a device_constraint
between Q and P

Creating A is easy or
hard

Q can be set (‘easy’
or ‘hard’) but not
changed (‘cant’ or
‘fixed’)

Formalising an Understanding of User-System Misfits 267

4.3 Hidden Dependencies

A hidden dependency occurs when important links between concepts are not visible
(or otherwise readily available to the user). Spreadsheets contain many hidden
dependencies, so that changing a value or formula somewhere in a sheet can have
unanticipated knock-on effects elsewhere in the sheet. Similarly, changing a style in
MS Word can have unexpected knock-on effects on other styles through the style
hierarchy. This is formalised simply:
Changing C affects D
The relationship is not visible

Here, C and D are concepts (entities or attributes). They may even be the same
concept. For example, in the word processor because the concept ‘style definition’
denotes an aggregate of styles formed into a hierarchy, changing any one definition
potentially changes other definitions that refer to it, so we have the reflexive
relationship:
Changing style-definition affects style-definition
The relationship is not visible

Figure 12 shows the basic requirements on a model for it to exhibit Hidden
Dependencies. Figure 13 shows the output when this particular model is assessed by
Cassata.

Fig. 12. Hidden Dependencies.

5 Conclusions

In this paper, we have presented a particular approach to assessing the usability of an
interactive system based on the idea of ‘quality of fit’ between user and system. In
particular, we have used the ontology of CASSM (considering entities, attributes,
actions and a set of defined relationship types, and properties of each of these) to de-

There is an affects relationship
between Q and P (or A and B) The ‘affects’

relationship is difficult
or absent at the interface

268 A. Blandford, T.R.G. Green, and I. Connell

Hidden Dependencies Check ---- Hidden Dependencies Model

 "A" affects "B"

possible case of hidden dependency:
there may be hidden dependency between "A" and "B"
====
 "P" affects "Q"

possible case of hidden dependency:
there may be hidden dependency between "P" and "Q"

Fig. 13. Output from Hidden Dependencies analysis in Cassata.

liver precise definitions of various kinds of surface and structural misfits. The
structural misfits are all based on Green’s [12] Cognitive Dimensions. Some of the
surface misfits can also be identified as CDs, but most are not, and all have been
independently derived from the basic CASSM ontology.

The prototype Cassata tool allows CASSM-based descriptions of systems to be
created quickly and with a minimum of special concepts. When a CASSM description
has been entered into Cassata, potential occurrences of both surface and structural
misfits can be automatically identified, thereby alerting analysts to possible usability
problems. With the help of Cassata we have preserved the original quick-to-do feel of
the Cognitive Dimensions analysis, unlike previous efforts at formalising the
Cognitive Dimensions framework [11,19].

In practice, we have found that it is usually easier to identify structural misfits
informally (as has been done historically with CDs) than by generating the full
CASSM representation in Cassata; in this case, the role of the formalisation is to
validate that informal understanding and make it more precise. The Cassata tool
provides simple but valuable support in identifying both surface and structural misfits.

We are not claiming that the set of misfits presented here is complete. There are
many different kinds of misfits between users and systems, many of which are outside
the scope of CASSM – for example, inconsistencies in procedures for similar tasks
would be picked up by other techniques but are not directly addressed within
CASSM. In this work, we have focused on conceptual misfits, which have not been
widely recognised in earlier work on usability evaluation.

The work reported here is ongoing; elsewhere, we have reported the application of
CASSM to various kinds of interactive systems [7,10]. Current work is addressed at
refining the Cassata prototype, extending the set of structural misfits and scoping
CASSM by comparison with other usability evaluation techniques (e.g. [6]). We
believe that this work makes an important contribution to the overall repertoire of
evaluation approaches for interactive systems.

Acknowledgements

This work is supported by EPSRC grant GR/R39108.

Formalising an Understanding of User-System Misfits 269

References

1. Beyer, H., Holtzblatt, K.: Contextual Design. San Francisco : Morgan Kaufmann. (1998).
2. Blackwell, A.F., Green, T.R.G.: A Cognitive Dimensions questionnaire optimised for users.

In A.F. Blackwell & E. Bilotta (Eds.) Proceedings of the Twelfth Annual Meeting of the
Psychology of Programming Interest Group (2000).137-152.

3. Blackwell, A., Green, T. R. G.: Notational systems – the Cognitive Dimensions of Notations
framework. In J. Carroll (ed.), HCI Models, Theories and Frameworks, Morgan Kaufmann.
(2003) 103-134.

4. Blackwell, A., Hewson, R., Green, T. R. G.: The design of notational systems for cognitive
tasks. E. Hollnagel (ed.) In E. Hollnagel (Ed.), Handbook of Cognitive Task Design.
Mahwah, N.J.: Lawrence Erlbaum. (2003) 525-545.

5. Blandford, A. E., Green, T. R. G.: Group and individual time management tools: what you
get is not what you need. Personal and Ubiquitous Computing. Vol 5 No 4. (2001) 213–230.

6. Blandford, A., Keith, S., Connell, I., Edwards, H.: Analytical usability evaluation for Digital
Libraries: a case study. In Proc. ACM/IEEE Joint Conference on Digital Libraries. (2004)
27-36.

7. Blandford, A. E., Wong, B. L. W., Connell, I. W., Green, T. R. G.: Multiple viewpoints on
computer supported team work: a case study on ambulance dispatch. In X. Faulkner, J.
Finlay & F. Détienne (eds), Proc. HCI 2002 (People and Computers XVI), Springer (2002)
139-156.

8. Blandford, A. E., Young, R. M.: Specifying user knowledge for the design of interactive
systems. Software Engineering Journal. 11.6, (1996) 323-333.

9. CASSM: Project web site www.uclic.ucl.ac.uk/annb/CASSM.html
10. Connell, I., Green, T., Blandford, A.: Ontological Sketch Models: highlighting user-system

misfits. In E. O’Neill, P. Palanque & P. Johnson (Eds.) People and Computers XVII, Proc.
HCI’03. Springer. (2003) 163-178.

11. Green, T. R. G., Benyon, D.: The skull beneath the skin: entity-relationship models of
information artifacts. International Journal of Human-Computer Studies, 44 (1996) 801-828

12. Green, T. R. G.: Cognitive dimensions of notations. In A. Sutcliffe and L. Macaulay (Eds.)
People and Computers V. Cambridge University Press. (1989) 443-460

13. Green, T.R.G.: The cognitive dimension of viscosity - a sticky problem for HCI. In D.
Diaper and B. Shackel (Eds.) INTERACT ’90. Elsevier. (1990)

14. Green, T. R. G., Blackwell, A. F.: Cognitive dimensions of information artefacts: a tutorial.
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (1998)

15. Green, T. R. G., Petre, M.: Usability analysis of visual programming environments: a
'cognitive dimensions' framework. J. Visual Languages and Computing, 7, (1996) 131-174.

16. Moran, T. P.: Getting into a system: external-internal task mapping analysis, in A. Janda
(ed.), Human Factors in Computing Systems, (1983) pp.45-49.

17. Nielsen, J.: Heuristic evaluation. In J. Nielsen & R. Mack (Eds.), Usability Inspection
Methods, New York: John Wiley (1994) 25-62.

18. Payne, S. J., Squibb, H. R., Howes, A.: The nature of device models: the yoked state space
hypothesis, and some experiments with text editors. Human-Computer Interaction, 5. (1990)
415-444.

19. Roast, C., Khazaei, B., Siddiqi, J.: Formal comparison of program modification. In IEEE
Symposium on Visual Languages, IEEE Computer Society (2000). 165-171.

20. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: A
practitioner's guide. In J. Nielsen & R. Mack (Eds.), Usability Inspection Methods. New
York: John Wiley (1994) 105-140.

270 A. Blandford, T.R.G. Green, and I. Connell

Discussion

[Willem-Paul Brinkman] In the case of misfits, the evaluator has to come up with an
idea of what concepts/ideas users are using, and whether or not they map on the
concepts of the system (system model/image). However, how does the evaluator
check, if his/her ideas/concepts map with ideas/concepts the users have?

[Ann Blandford] You present your finding to the users, and ask them
whether they agree with having/using these concepts. At the moment this
seems the best and most practical way.

[Jürgen Ziegler] How do dimensions like ‘viscosity’ relate to other, more established
usability measures like ‘effectiveness’?

[Ann Blandford] Effectiveness might be a higher level concept, viscosity
addresses sub aspects.

[Tom Ormerod] The distinction between concepts and tasks is interesting, though
examples seemed to be about the tasks. Is CASSM about discovering concepts?

[Ann Blandford] With the figure-numbering example, it is about making
explicit an issue that is implicit, so yes

[Tom Ormerod] What would CASSM offer to the easier example of the problem of
understanding the layers concept?

[Ann Blandford] It suggests a search for ways to represent the layers
explicitly at the interface.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 271-288, 2005.
 IFIP International Federation for Information Processing 2005

Supporting a Shared Understanding of
Communication-Oriented Concerns in Human-Computer

Interaction: A Lexicon-Based Approach

Simone Diniz Junqueira Barbosa1, Milene Selbach Silveira2,
Maíra Greco de Paula1, Karin Koogan Breitman1

1Departamento de Informática, PUC-Rio
Marquês de São Vicente, 225 / 4o andar RDC
Gávea, Rio de Janeiro, RJ, Brazil, 22453-900

simone@inf.puc-rio.br, mgreco@inf.puc-rio.br,
karin@les.inf.puc-rio.br
2 Faculdade de Informática, PUCRS

Av.Ipiranga, 6681, Prédio 30, Bloco 4
Porto Alegre, RS, Brazil, 90619-900

milene@inf.pucrs.br

Abstract. This paper discusses the role of an enhanced extended lexicon as a
shared communicative artifact during software design. We describe how it may
act as an interlingua that captures the shared understanding of both stakeholders
and designers. We argue for the need to address communicative concerns
among design team members, as well as from designers to users through the
user interface. We thus extend an existing lexicon language (LEL) to address
communication-oriented concerns that user interface designers need to take into
account when representing their solution to end users. We propose that the
enhanced LEL may be used as a valuable resource in model-based design, in
modeling the help system, and in engineering the user interface elements and
widgets.

Keywords: communication-centered design, model-based design of human-
computer interaction, semiotic engineering, language extended lexicon

1 Introduction

In this paper, we describe a lexicon-based representation to express domain and
application concepts during the design process. We propose that, by doing so,
designers, users and other stakeholders may have a shared understanding of the
application, detailing its relevant concepts and their relationships. We have argued
elsewhere that we need representations that will make possible a more balanced
participation of stakeholders and team players from different interdisciplinary
background during design [3]. This paper will focus on the communicative concerns
that (esp. interaction) designers must deal with throughout the design process. We
follow Preece et al.’s definition of interaction design: “designing interactive products

272 S. Diniz Junqueira Barbosa et al.

to support people in their everyday and working lives” [26, p.6]. This definition is in
accordance with Mullet & Sano’s perspective that human-computer interaction (HCI)
is “concerned most directly with the user’s experience of a form in the context of a
specific task or problem, as opposed to its functional or aesthetic qualities in
isolation” [20, p.1]. Within HCI, semiotic engineering [9,10] has emerged as a
semiotics-based theory [11,24] that describes and explains HCI phenomena, adopting
primarily a media perspective on the use of computer artifacts [16].

Scenarios have been used as the primary representation to foster communication
among team members and stakeholders [6]. We propose that an enriched lexicon can
complement scenarios by representing together the different perspectives of each sign,
which are typically scattered in many scenarios. This lexicon can be used to establish
a common vocabulary throughout various design stages. By doing so, we believe it
would be easier to build the design models taking both the lexicon and the scenarios
as a starting point. In particular, such a lexicon can be used to derive three important
kinds of resources: the user interface signs, which users should understand and learn
to manipulate to make the most of their interaction with application [9,10]; the help
content [29, 30]; and ontologies [13, 14], which can be employed in user, dialog and
task modeling, especially in adaptive user interfaces [22] and the semantic web [4].

2 Semiotic Engineering and Communication-Centered Design

Semiotic Engineering focuses on the engineering of signs that convey what HCI
designers and users have in mind and what effect they want to cause in the world of
things, practices, ideas and experiences [9,10]. The interface signs constitute a
message sent from designers to users, representing the designers’ solution to what
they believe is the users’ problems, what they have interpreted as being the users’
needs and preferences, what the answer for these needs is and how they implemented
their vision as an interactive system. In particular, semiotic engineering proposes a
change of focus from producing to introducing design artifacts to users [10].

Our work builds on semiotic engineering by attempting to ensure that domain
concepts are well represented and understood by every team member1 before
proceeding to later design stages. We need to promote the shared understanding
among the team members (for instance, by representing domain concepts and their
interrelationships), and to allow designers to represent communication-centered
concerns developed for improving designer-to-user communication during interaction
[9,10]. Our basic assumption is that, in order to increase the chances of engineering
adequate signs at the user interface to convey the designers’ vision and thus properly
introduce the design artifact, we need to first establish this vision and communicate it
effectively among team members themselves, always from a user’s point of view
(Fig. 1).

1 By “team members” we mean the stakeholders (clients and users) and the designers (members

of the development team from various disciplines, such as software engineering, human-
computer interaction, graphics design, linguistics, psychology and so on).

Supporting a Shared Understanding of Communication-Oriented Concerns 273

system

user
interface

communication-
oriented concerns
(designer-to-user
communication)

individual
designer’s

understanding

individual
designer’s

understanding

individual
designer’s

understanding

design team’s
shared

understanding

users

domain
concepts and
relationships

scenarios

What? How?
Who? When?

Why? Why not?
What if?

what

engineering of
user interface
sign systems

software design
and

specification

task model,
interaction
model and
storyboards

specification
models

how

individual
designer’s

understanding

Fig. 1. Communication-centered design.

The communication-oriented concerns we will address in this paper are derived from
studies about users’ frequent doubts [1,28], as indicated by the dashed arrow in Fig. 1.
These concerns will be described in section 4.

If designers are unable to convey their vision to each other and to every
stakeholder, they will hardly succeed in conveying it to users (through carefully
designing the user interface). If, on the other hand, they succeed in promoting
designer-designer communication via communication artifacts, they will be better
equipped to communicate with users through the user interface, i.e., to engineer the
user interface sign systems. This way, we aim to take one step towards a
communication-centered approach to interactive software design and development.

3 The Language Extended Lexicon (LEL)

As a starting point to building our communication artifacts, we take on the
requirements engineering work of the Language Extended Lexicon (LEL) [18]. The
LEL is a representation of the signs in the language of the application domain. LEL is
anchored on the idea that one must first “understand the language of the problem,
without worrying about understanding the problem” [18]. Researchers in different
areas have pointed out the strong relationship between culture and language. In
semiotics, in particular, the works of Eco and Danesi pay special attention to the web
of language, culture and social environments [8,11]. In software design, the strength
of using language to promote a shared understanding of the problem design domain
and also of the solution accounts for the success of scenario-based approaches in
various design stages [6].

To capture the language of the application domain and represent it in a Universe of
Discourse (UofD), each term in LEL has two types of description: (i) notion, the
denotation of the term or phrase; and (ii) impact, extra information about the context

274 S. Diniz Junqueira Barbosa et al.

at hand2. In addition, each lexicon term is classified in four categories: object, subject,
verb and state. The strong points in LEL are the principles of closure and of minimal
vocabulary. The principle of closure attempts to “maximize the use of signs in the
meaning of other signs”, whereas the principle of minimal vocabulary “demands that
external vocabulary be minimized and reduced to the smallest set possible”. The
external vocabulary is the set of terms that lie outside of the UofD. These terms
should belong to the basic vocabulary of the natural language in use, i.e., be clearly
known to every stakeholder.

identify
infomation

sources

validate
LEL

identify list
of

terms

classify
terms

describe
terms

verify
LEL

UofD

LEL

LEL

validation heuristics

classification and
indentification heuristics

elicitation
techniques

order
criteria

information
source list

term
selection
heuristics

list of
terms

UofD

LEL

checklist verification
heuristics

list of
classified

terms

information source list

UofD

information source list

UofD
general

classification
classification

criteria

LEL
model types

representation
heuristics

DEO
validation

list

DEO
validation

list

Fig. 2. Lexicon construction process [17].

Kaplan and co-authors describe in detail the process of constructing a LEL
representation [17]. It comprises six steps, as depicted in Fig. 2. First one needs to
identify the main information sources of the UofD, such as people and documents.
Then, one must identify a list of relevant terms to be included in the UofD. By
observing how people work and interviewing them, as well as by reading the
documents and inspecting the artifacts they generate or use, a candidate list of terms is
generated. Each term is then classified into object, subject, verb or state. The fourth
step is to describe the meaning of each term —define its notion and impact—, being
careful so as to respect the the principles of closure and minimal vocabulary. This step
typically unveils additional terms to be included in the lexicon, and which undergo a
similar process. In the last two steps, the lexicon is verified by inspection and

2 LEL authors state that the impact, formerly known as behavioral description, describes the

“connotation, that is., and additional meaning of a word” [18]. From a semiotic point of
view, however, the use of the term connotation in this sense is not accurate, and thus will not
be used in this paper.

Supporting a Shared Understanding of Communication-Oriented Concerns 275

validated by the stakeholders. As with scenarios, the lexicon is written in natural
language, which makes it easy for non-experts to understand, question, and validate.
The lexicon is also represented as a hypertext, which makes it easy to navigate
between any two related terms.

In the context of the semantic web, there is a growing need to represent the
semantics of the applications [4]. The need is fully met by the LEL, which provides
both the meaning and relationships among its terms. However, the fact that the LEL is
coded in natural language format prevents is from being automated by machines.
Ontologies, in our understanding, are the formalization of the concepts captured by
the LEL in a machine processable language, e.g., DAML+Oil or OWL [15, 19].
Readers who are interested in deriving formal ontologies may refer to [5], which
describes how to derive a machine-processable ontological representation from the
lexicon.

We argue that the quality of the resulting lexicon depends highly on the experience
and domain knowledge of its builders. Moreover, in following a semiotic engineering
approach to HCI, we would like the meaning descriptions to reflect the designers’
assumptions about the users’ knowledge and expectations of the domain and
application. As we will see in the next sections, these assumptions may be captured in
the form of answers to questions related to the users’ most frequent doubts. In this
context, this paper proposes to extend LEL to enhance its capacity as a
communicative artifact among team members, and as a concrete resource for model-
based design of interactive artifacts.

It is important to note that we do not suggest to use LEL in isolation. Instead, we
propose to use it to complement scenarios [6]. Scenarios give all stakeholders an
understanding of the domain and of the application being designed, in a
contextualized manner. However, we felt the need to centralize the definitions of
goals, tasks, agents and objects, because if they are scattered throughout scenarios,
problems of inconsistency and incompleteness may prevent designers to build an
adequate conceptual model of the domain (and later of the solution). This would make
it harder to engineer the signs that will be conveyed to users through the user
interface. Designers need both the contextualization of the scenarios and the different
perspectives that LEL gathers together for each sign.

4 Communication-Oriented Concerns in Model-Based Interaction
Design

Although LEL is a useful tool for representing domain concepts and their
interrelationships, we want to shift the focus to communication-oriented concerns
involved in user-system interaction. These concerns were explored in previous work
on communicability evaluation [25] and help systems design [29]. In this section, we
outline the communication-oriented concerns that, we believe, need to be represented
throughout the design process.

Traditional model-based approaches to user interface design are rooted in cognitive
theories or ergonomic approaches, which focus on the human interacting with the
system image [21]. Our work is based on semiotic engineering [9], which takes on a
communicative perspective to HCI, viewing the user interface as a metamessage sent

276 S. Diniz Junqueira Barbosa et al.

from designers to users. This message is created in such a way as to be capable of
exchanging messages with users, i.e., allowing human-system interaction. In semiotic
engineering, the high-level message sent from the designer to users can be
paraphrased as follows [9]:

“Here is my understanding of who you [users] are, what I’ve learned you
want or need to do, in which preferred ways, and why. This is the system that I
have therefore designed for you, and this is the way you can or should use it
to fulfill a range of purposes that fall within this [my] vision.”

Because semiotic engineering brings to the picture designers themselves as
communicators, we need to provide tools to better support them in this
communicative process, ultimately via the user interface. One way to accomplish this
is by investigating communication problems users experience when interacting with
an application. These problems may be expressed by their frequent doubts and needs
for instructions and information, i.e. help content. In the literature about help systems,
we find that users would like to receive answers to their most frequent doubts, as
summarized in Table 1 [1,28].

Table 1. Taxonomy of users’ frequent doubts.

Types of Questions Sample Questions
Informative What kinds of things can I do with this program?
Descriptive What is this? What does this do?

Procedural How do I do this?
Interpretive What is happening now? Why did it happen? What does this mean?
Navigational Where am I? Where have I come from? Where can I go to?

Choice What can I do now?
Guidance What should I do now?
History What have I done?

Motivational Why should I use this program? How will I benefit from using it?
Investigative What else should I know? Did I miss anything?

We propose that the questions related to the users’ most frequent doubts be explicitly
addressed throughout the various design stages, starting from requirements elicitation
(and the construction of the LEL). Our ultimate goal is to provide designers with a
comprehensive understanding of the domain and of the effects of their design
decisions on the final product (i.e. the user interface), as viewed from a user’s point-
of-view. By using these potential user questions, we help designers to reflect while
they make important design decisions, engaging in reflection-in-action [27]. At the
same time, we would want to encourage the representation of these design decisions,
thus building the design rationale of the envisaged application.

From the users’ point-of-view, we make use of communicability and help
utterances that allow users to better express their doubts during interaction [29] (Table
2). By anticipating users’ doubts during design, the team members will be better
equipped to deal with the users’ communicative needs, either by designing
applications that avoid interaction breakdowns altogether, or by giving users better
chances for circumventing them [31].

Supporting a Shared Understanding of Communication-Oriented Concerns 277

Table 2. Communication-oriented utterances related to users’ doubts during interaction
breakdowns.

Original Communicability Utterances (Additional) Help Utterances
What’s this?
What now? (What can I do? What should I
do? Where can I go?)
What happened?
Why doesn’t it (work)?
Oops!
Where is it?
Where am I?
I can’t do it.

How do I do this? (Is there another way to do
this?)
What is this for? (Why should I do this?)
Whom/What does this affect?
On whom/what does this depend?
Who can do this?
Where was I?

An answer to the “What’s this?” communicability utterance can be easily found in the
notion part of each LEL term. For other utterances, however, the answers are not so
straightforward, and depend highly on how meaning is described as an impact in LEL.
In the next section, we describe how LEL definitions may include key elements
needed in our design approach.

5 Enhancing LEL to Provide a Communicative Artifact for Design
Team Members

In the previous sections, we have argued for the importance of providing a common
vocabulary to promote the stakeholders’ shared understanding of the domain using the
LEL, and how relevant design decisions should be addressed and represented from a
communication-oriented standpoint while building the design models. In this section,
we explore how these two approaches may be coupled, i.e., how the answers to
important design decisions can be recorded as part of the LEL, making it easier to
take advantage of them in later design and specification stages.

Taking into consideration the communication-oriented concerns described in the
previous section, we propose to enhance the LEL to incorporate the various
communicative dimensions related to each concept or relationship. By doing so, we
aim not only to create consensus among team members, but also to provide solid
grounds for engineering the user interface sign systems that will minimize the effects
of interaction breakdowns.

To show how our approach can be put to practical use, we briefly describe a case
study we’ve developed: a system for managing conference submissions and reviews.
Before building LEL, we felt the need for some guidance in identifying the first
relevant signs. Inspired by traditional HCI work, we decided to start by building
scenarios describing some of the users’ roles, goals and tasks (Fig. 3). From the users’
roles, we identified candidate roles (subjects in LEL), and from the goals and tasks we
extracted a first set of verbs and objects.

278 S. Diniz Junqueira Barbosa et al.

Scenario 1. PC chair assigns submissions to reviewers. The deadline for the
ABC 2004 conference has arrived, and Mark, the PC chair, needs now to
start the reviewing process. First he assigns the submissions to the reviewers,
based on the maximum number of submissions each reviewer has
determined, as well as on the expertise level of each reviewer with respect to
theconference topics. He would like to have at least 3 reviews of each
submission. To avoid having problems of fewer reviews, he decides to assign
each submission to at least 4 reviewers. […] One month later, Mark receives
the reviews and must now decide upon the acceptance or rejection of each
submission. Since there are a few borderline submissions, whose grades do
not make clear whether it should be accepted or rejected, he decides to
examine the distribution of submissions per conference topic. In doing so, he
decides, from among submissions with similar ratings, those that will ensure
some diversity in the conference program. However, this is not enough to
decide about the acceptance of all submissions, and thus he assigns the
remaining cases to additional reviewers, asking them for a quick response.

Scenario 2. Reviewer judges submissions. John, an HCI expert, accepts
Mark invitation to become a reviewer for ABC 2004. He tells Mark that he
will only be able to review 3 submissions, though. To help Mark with the
submissions assignment, he chooses from among the conference topics those
he wishes to review, i.e., in which he is an expert and interested. […] He
receives 4 submissions (one more than he’d asked for), but decides to review
them all. He carefully reads every submission, and grades them according to
the form Mark gave him, with the criteria of: originality, relevance to ABC
2004, technical quality, and readability. For the submissions that he judged
acceptable, he makes some comments that he thinks will help authors to
prepare the final version. For the submission he thinks must be rejected, his
comments suggest improvements in the work itself, for future submissions.

Fig. 3. Sample scenarios, describing user roles, the corresponding goals and tasks, and
highlighting the candidate LEL signs in boldface.

By coupling LEL’s basic elements — object, subject, verb and state— with
communicability utterances, we allow design team members to thoroughly represent
and understand the domain concepts from a user’s point-of-view. At later design
stages, designers may also use it to reflect on how the application should support
users’ tasks in this domain [27]. For each pair <element, utterance>, we suggest the
identification of key elements that are needed to respond to the corresponding
utterance. These questions work with LEL in a way analogous to the systematic
questioning of scenarios proposed in [7]. Tha major difference is that the questions
we use are grounded on users’ most frequent doubts.

Supporting a Shared Understanding of Communication-Oriented Concerns 279

In the following, we relate the possible kinds of answers to each pair
<element,utterance>, as well as the elements designers should try to include in their
phrasing in order to provide such answers (Tables 3 to 6).

Table 3. Communicative utterances and suggested content for the description of LEL subjects.

subject elements included in the sign meaning comm. utterances
basic notion 1. what goals the subject {may | must | must not}

achieve;
What’s this?
What’s this for?

2. which goal(s), task(s) and action(s) are
available;

3. what task sequences (are assumed that) the
subject will prefer for each goal

How do I do this?

Why should I do
this?
What now? (What

can I do?)
impact

4. breakdowns that hinder the performance of an
action or task, or the achievement of a goal

What happened?

Table 4. Communicative utterances and suggested content for the description of LEL objects.

object elements included in the sign meaning comm. utterances
basic notion 5. object type, with respect to a

generalization/specialization hierarchy of object-
signs;

6. object composition, with respect to a partonomy of
object-signs and a set of attribute-signs

What’s this?

7. which goal(s) {produce | destroy | modify | require}
the object;

8. which task(s) or action(s)
{produce | destroy | modify | require } the object,
and why (associated with which goal)

What’s this for?

impact

9. which subject(s) {may | must | must not} {
create | destroy | modify | view } the object

Who can do this?

Table 5. Communicative utterances and suggested content for the description of LEL verbs.

verb elements included in the sign meaning comm. utterances
basic notion 10. subtasks or subordinate atomic actions;

11. what objects are
{produced | destroyed | modified | required}

What’s this?

280 S. Diniz Junqueira Barbosa et al.

12. subjects who {may | must | must not} achieve the
goal;

13. subjects who {may | must | must not} perform the
action or task

Who can do this?
(I can’t do it.)

14. associated user goal(s);
15. reasons for choosing this task or action over

another that achieves the same goal(s)

What’s this for?

Why should I do
this?

16. task or action sequences available for achieving
the goal

How do I do this?

Is there another
way to do this?

17. possible outcomes of the action;
18. for outcomes that may represent a breakdown,

actions for circumventing it

What happened?

19. subjects affected by the achievement of the goal
or performance of the task or action;

20. the possible resulting status of the objects after
the goal, task or action

Whom/What does

this affect?

21. preconditions for performing the action or task, or
for achieving the goal;

22. subjects that restrict the achievement of the goal
or performance of the task or action;

23. the necessary status of the objects before the
goal, task or action

On whom/what
does this depend?
(I can’t do it.)

impact

24. task sequence(s) necessary to reverse the action Oops!

Table 6. Communicative utterances and suggested content for the description of LEL status.

status elements included in the sign meaning comm. utterances
basic notion 25. objects or subjects to which this status

corresponds
What’s this?

26. tasks or actions that change this status What’s this for?

27. how this status can be reached (through which
task(s) or action(s))

How do I do this?

28. explanation on how the current state was (or
may have been) reached;

29. corrective measures to allow the user to reverse
the effects of the task or action

Oops!

30. how to change the status to achieve a goal;
31. for status that may represent a breakdown,

suggested actions for circumventing it

What now?

(I can’t do it)

impact

32. how the status was reached What happened?

Where was I?

In these tables, we have extended the LEL to include some of the communication-
oriented utterances, but we have maintained the independence of the technological

Supporting a Shared Understanding of Communication-Oriented Concerns 281

solution. To answer the remaining utterances (Where is it?, Where am I?, Where was
I?, and Why doesn’t it?), it is necessary to provide more detail with respect to the
interactive solution. The level of detail represented in LEL, in our view, should reflect
the design decisions that have been made at each design stage.

While modeling the tasks or designing the interaction, it should be possible to
answer the following questions (Table 7):

Table 7. Descriptions of LEL elements to be completed during interaction design.

Subject
LEL elements included in the sign meaning comm. utterances

33. at each interaction step, the current “position”
relative to a goal

Where am I? impact

34. at each interaction step, the previous step;
35. how to go back to the previous step

Where was I?

At a later stage, while designing the user interface, it should be possible to answer the
following questions:

Table 8. Descriptions of LEL elements to be completed during user interface design.

Object
LEL elements included in the sign meaning comm. utterances
impact 36. widget that corresponds to the object;

37. location of the widget at the user interface
Where is it?

Verb
LEL elements included in the sign meaning comm. utterances
impact 38. the kind of feedback issued after triggering the

action;
39. the associated goal(s) to detect mismatches

between users’ goals and user interface
elements

Why doesn’t it?

Many of the responses associated to the pairs <element, utterance> are interrelated.
The hypertextual nature of LEL makes it easier for team members to traverse from
one concept to related questions in another concept, using the utterances as a
navigation aid [18]. This mechanism is analogous to the layering technique used in
the minimalist approach [12] and to the help access mechanisms proposed in [29,30].

Table 9 presents a sample of the enriched LEL for the conference management
system described in the aforementioned scenarios.

282 S. Diniz Junqueira Barbosa et al.

Table 9. Sample of the enriched LEL for the conference management system3.

Object: Submission
LEL elements included in the sign meaning comm. utterances
basic notion 40. A document describing a research work that is

submitted by an author to be considered for
publication in the conference.

41. Is reviewed with respect to quality.

42. May be accepted or rejected.

What’s this?

impact

43. PC chair must assign submissions to adequate
reviewers.

44. PC chair must decide about acceptance of
borderline submissions, either by assigning
submissions to additional reviewers or by
checking for diversity of submissions with
respect to conference topics.

45. Reviewer tells PC chair how many submissions
he’d be willing to review, so that he doesn’t
receive too many submissions.

46. Reviewer grades submissions to review.
47. PC chair ranks submissions according to

reviews.

What’s this for?

Who can do this?

Subject: Reviewer
LEL elements included in the sign meaning comm. utterances
basic notion 48. Expert in some of the conference topics.

49. Responsible for reviewing submissions.
What’s this?
What’s this for?

50. May set number of desired submissions to
review.

51. May define expertise and expectations with
respect to keywords/topics, to review only
submission for which you are an expert.

52. Must grades and comment submissions
according to their quality.

What can I do?

impact

53. May need to decline an assignment due to
conflict of interest or lack of knowledge.

What happened?

3 For reasons of clarity, these tables do not show the hypertext links. As in the original LEL, if

any LEL sign A is found in the meaning of the current sign B, A would be marked as
hypertext link to the LEL definition of A.

Supporting a Shared Understanding of Communication-Oriented Concerns 283

Verb : Review (submission) 4
LEL elements included in the sign meaning comm. utterances
basic notion 54. To evaluate the quality of the submission.

55. To comment on the content of the submission
to guide authors in preparing the final version, if the
submission is acceptable, or a future submission, if
it is unacceptable.

What’s this?

What’s this for?

56. Reviewers must review the submissions
assigned to him.

57. Own authors and interested parties must not
review the submission.

58. Non-experts should not review the submission.

59. No one may review a submission not assigned
to him.

Who can do this?

(I can’t do it.)

60. To help the PC chair in deciding on the
acceptance or rejection of submissions.

What’s this for?

Why should I do this?

61. There must be grades to the following criteria:
originality, relevance to conference, technical
quality, and readability.

How do I do this?

Is there another way
to do this?

62. The PC chair decisions about acceptance or
rejection depend on the reviews.

63. A review may be completed and sent in time, or
may be late or missing.

Whom/What does
this affect?

64. The PC chair is responsible for assigning
submissions for reviewers to review.

On whom/what does
this depend? (I can’t

do it.)

impact

65. If the reviewer makes a mistake in the review,
he needs to be able to modify or destroy it.

Oops!

By exploring the answers to the questions related to each LEL element from the
users’ standpoint, designers not only move towards achieving a shared understanding
of the domain and how the application should support the users, but also are able to
envisage the consequences of their design decision with respect to the user’s future
interactive exchanges with the application. Also, by doing so designers are developing
a large portion of the help content for the final product pari passu the design decisions
[30]. We believe this may facilitate not only the application evolution, but also the
generation of user interfaces for multiple platforms and devices.

4 A verb in LEL typically corresponds to a goal, task or action, but we define it in terms of the

objects it manipulates.

284 S. Diniz Junqueira Barbosa et al.

From the responses to the communication-oriented questions, designers may then
proceed to modeling the application. Fig. 4 illustrates a possible schema for modeling
the designers’ concerns [29] as related to the communication-oriented questions.

Interaction
model

Interface
specification

Domain model

Application
model

User
model

Task
model

Domain

Application

Task

Agent Action

Interface
Element

acts in
uses

performs

affects

acts upon

supports

operated by

composed of composed of

domain: What is the application domain?
description: What is the nature of work in this domain? application: What is the application (technology x domain)?

utility: What can one do with this application?
advantages: What are its advantages over other apps?
platform: Which computational environment is assumed?
analogy: Is there a basic HCI analogy?

description: What does the task mean?
revocation: How can the effects of the
task be reversed (undone)?
motivation: Why should users do this?
influence: Who is affected by this task?

role: What are the roles?
actors: Who are the actors in each role?
knowledge: What do users need to know?

context: Where am I? Where can I go? Where
did I come from? What happened?
next step: What should/can I do after the task?

form: How does it look?
behavior: How do I use it?
location: Where is it?

Fig. 4. Schema for representing information in model-based design of human-computer
interaction.

From a first version of this schema, HCI designers may then proceed into detailed
interaction modeling [2,3] and storyboarding, whereas software designers have
resources to specify the system’s functional aspects.

6 Concluding Remarks

In this paper, we have described a communication-oriented design approach that
brings together a technique for eliciting requirements and a design method driven by
users’ frequent doubts. Our goal was twofold: to create a shared understanding of the
domain and how the application should support users in that domain, and to provide
resources (and possible the underlying design rationale) for designing the interaction
and engineering the user interface signs.

We illustrated the proposed approach by briefly describing some aspects of a case
study system for conference submission and reviewing. During the case study, we
noticed at least two important benefits of the proposed approach. First, the
communication-oriented utterances, coupled with the elements to be included in the

Supporting a Shared Understanding of Communication-Oriented Concerns 285

sign meaning (described in the tables at the previous section), helped designers
inspect LEL, uncovering additional signs and refining previously-defined meanings of
existing signs. Second, by explicitly representing the communicative concerns
associated with each domain concept, design team members succeeded in forming a
comprehensive vision of the domain and the application, and could thus envisage
alternative technological solutions at the users’ workplace. The case study described
in this paper is still underway, and we plan to evaluate the communicability of the
resulting application, and also a usability inspection to compare it with an existing
application of a similar kind.

To gather stronger evidence about the advantages of this approach, we are
currently developing multiple case studies, in the following domains: web content
publication and location-based instant messaging in mobile devices. One of the issues
we want to explore is whether the LEL structure or its classification should be
changed to better accommodate the communicative concerns and the evolution of
each concept’s definition during different design stages, to capture the underlying
design rationale and to provide different levels of focus and detail to address the
relevant design concerns at each moment. The reason for investigating whether LEL
structure should be changed is that, in our case study, at times we were tempted to
structure LEL’s descriptions according to users’ goals and tasks, as in common HCI
practice. Also, we felt that some elements do not fit well into LEL’s classification,
such as “expertise” or “submission deadline”. We intend to analyze in the future
whether modifiers and constraints should also receive a first-class status in LEL and
thus be considered relevant signs with their own set of communication-oriented
questions. For now, we have treated them as generic signs, for which the only
associated question is “What’s this?”.

As future work, we intend to elaborate a set of guidelines for deriving
communication-oriented interaction models [2] and for engineering user interface
signs [9] from the enhanced LEL. In addition, we want to investigate the benefits of
adopting the approach described in this paper in the design of an adaptive system, by
deriving formal ontologies and explicitly incorporating to these systems the users’
beliefs, goals, and plans.

Acknowledgments

Simone D. J. Barbosa, Maíra Greco de Paula and Karin Breitman would like to thank
CNPq for providing financial support to this work. Simone D.J. Barbosa, Milene
Selbach Silveira and Maíra Greco de Paula thank their colleagues at the Semiotic
Engineering Research Group at PUC-Rio for many discussions that have contributed
to this work.

References

1. Baecker, R.M. et al. (1995). Readings in Human-Computer Interaction: toward the year
2000. San Francisco: Morgan Kaufmann Publishers, Inc.

286 S. Diniz Junqueira Barbosa et al.

2. Barbosa, S.D.J.; de Souza, C.S. ; Paula, M.G. (2003) “The Semiotic Engineering Use of
Models for Supporting Reflection-In-Action”. Proceedings of HCI International 2003.
Crete, Greece.

3. Barbosa, S.D.J; Paula, M.G. (2004) “Adopting a Communication-Centered Design
Approach to Support Interdisciplinary Design Teams”. Bridging the Gaps II: Bridging
the Gaps Between Software Engineering and Human-Computer Interaction, ICSE 2004
workshop, Edinburgh, Scotland.

4. Berners-Lee, T.; Hendler, J.; Lassila, O. (2001) “The Semantic Web”, Scientific
American, May 2001. Available online at: http://www.scientificamerican.com/
article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2

5. Breitman, K. and Leite, J. (2003) Ontology as a Requirement Engineering Product .In:
11th IEEE International Requirements Engineering Conference. Monterey Bay,
California, USA, pp. 309-319.

6. Carroll, J.M. (ed., 1995) Scenario-based Design: Envisioning Work and Technology in
System Development. New York, NY. John Wiley and Sons.

7. Carroll, J.M.; Mack, R.L.; Robertson, S.P.; Rosson, M.B. (1994) “Binding Objects to
Scenarios of Use”, International Journal of Human-Computer Studies 41:243-276.
Academic Press.

8. Danesi, M., Perron, P. (1999) Analyzing Cultures: An Introduction and Handbook,
Indiana University Press.

9. de Souza, C.S. (in press) The Semiotic Engineering of Human-Computer Interaction. The
MIT Press.

10. de Souza, C.S. (in press) Semiotic engineering: switching the HCI perspective from
producing to introducing high-quality interactive software artifacts. Interacting with
Computers 16-6. Forthcoming.

11. Eco; U. (1979) A theory of Semiotics, Bloomington, IN: Indiana University Press.

12. Farkas, D.K. (1998) “Layering as a Safety Net for Mini-malist Documentation”. In J.M.
Carroll (ed.) Minimalism Beyond the Nurnberg Funnel. The MIT Press, Cambridge.

13. Fensel, D. (2001) Ontologies: a silver bullet for knowledge management and electronic
commerce, Springer.

14. Gruber, T.R.(1993) “A translation approach to portable ontology specifications”,
Knowledge Acquisition, 5 (2): 199-220

15. Hendler, J.; McGuiness, D. (2000) “The DARPA agent Markup Language”, IEEE
Intelligent Systems, 16 (6), 2000. pp.67-73.

16. Kammersgaard, J. (1988) “Four different perspectives on Human-Computer Interaction”,
International Journal of Man-Machine Studies 28:343-362, Academic Press.

17. Kaplan, G.; Hadad, G.; Doorn, J.; Leite, J.C.S.P. (2000) “Inspección del Lexico
Extendido del Lenguaje”. Proceedings of the Workshop de Engenharia de Requisitos,
WER’00. Rio de Janeiro, Brasil.

18. Leite, J.C.S.P.; Franco, A.P.M, (1992) “A Strategy for Conceptual Model Acquisiton”.
Proceedings of the IEEE International Symposium on Requirements Engineering, IEEE
Computer Society Press, Pags. 243-246, San Diego.

Supporting a Shared Understanding of Communication-Oriented Concerns 287

19. McGuiness, D.; Harmelen, F. (2003) OWL Web Ontology Overview, W3C Working
Draft 31 March 2003.

20. Mullet, K., and Sano, D. (1995) Designing Visual Interfaces: Communication-Oriented
Techniques, SunSoft Press, Mountain View, CA.

21. Norman, D. e Draper, S. (eds., 1986) User Centered System Design. Hillsdale, NJ.
Lawrence Erlbaum.

22. Oppermann, R. (1994) Adaptive user support : ergonomic design of manually and
automatically adaptable software. Hillsdale, N.J. : Lawrence Erlbaum Associates.

23. Paternò, F. (2000) Model-Based Design and Evaluation of Interactive Applications,
London, Springer-Verlag.

24. Peirce, C.S. (1931-55) Collected Papers. Cambridge, Ma. Harvard University Press.
(excerpted in Buchler, Justus, ed., Philosophical Writings of Peirce, New York: Dover,
1955).

25. Prates,R.O., de Souza, C.S., Barbosa, S.D.J. (2000) “A Method for Evaluating the
Communicability of User Interfaces”. ACM Interactions, 31–38, Jan-Feb 2000.

26. Preece, J., Rogers, Y., and Sharp, H. (2002) Interaction design: beyond human-computer
interaction, John Wiley & Sons, New York, NY.

27. Schön, D. (1983) The Reflective Practitioner: How Professionals Think in Action, New
York, Basic Books.

28. Sellen, A.; Nicol, A. (1990). Building User-Centered On-line Help. In Laurel, B. The Art
of Human-Computer Interface Design. Reading: Addison-Wesley.

29. Silveira, M.S.; Barbosa, S.D.J.; de Souza, C.S. (2001) Augmenting the Affordance of
Online Help Content. Proceedings of IHM-HCI 2001, Lille, Springer-Verlag.

30. Silveira, M.S.; Barbosa, S.D.J.; de Souza, C.S. (2004) Model-based design of online help
systems. Proceedings of CADUI 2004.

31. Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition: A New
Foundation for Design, Addison-Wesley, Reading, MA.

Discussion

[Fabio Paternò] There is a tool that takes scenario and associates with objects and
with tasks. Do you think that your method can be supported by a tool able to derive
more structured information?

[Simone D.J. Barbosa] The current approach is merely oriented for a
designer analysis. We are not thinking about tool support.

[Philippe Palanque] Where does your taxonomy, presented at the beginning of the
talk, comes from?

[Simone D.J. Barbosa] This comes from work on help systems

288 S. Diniz Junqueira Barbosa et al.

[Philippe Palanque] So it does not come from a semiotic engineering analysis?
[Simone D.J. Barbosa] No, but Semiotic Engineering would be useful to
build this kind of taxonomy

[Ann Blandford] You said there is no such thing as a typical user. How do you deal
with the usability across users?

[Simone D.J. Barbosa] What we are reasoning about is what is expected of
users and how those expectations are communicated to them.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 289-291, 2005.
 IFIP International Federation for Information Processing 2005

A Seamless Development Process of Adaptive User
Interfaces Explicitly Based on Usability Properties

Víctor López-Jaquero†‡, Francisco Montero†‡, José P. Molina†‡, P. González†,
A. Fernández-Caballero†

† Laboratory on User Interaction & Software Engineering (LoUISE)
University of Castilla-La Mancha, 02071 Albacete, Spain

{victor|fmontero|jpmolina|pgonzalez|caballer}@info-ab.uclm.es
‡ Belgian Laboratory of Computer-Human Interaction (BCHI)

Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
{lopez|montero|molina}@isys.ucl.ac.be

Abstract. This work is aimed at the specification of usable adaptive user
interfaces. A model-based method is used, which have been proved useful to
address this task. The specification created is described in terms of abstract
interaction objects, which are translated into concrete interaction objects for
each particular platform. An adaptive engine is also proposed to improve the
usability at runtime by means of a multi-agent system.

A Seamless Process for Adaptation Development

Currently different interaction paradigms are emerging due to several factors, such as
ubiquitous access to information, the consideration of different user expertise levels,
accessibility criteria or the wide range of interaction devices with specific capabilities
(screen size, memory size, computing power, etc). In this paper a method is
introduced for the specification of user interfaces of highly interactive systems with
the capability of self-adapting to the changes in the context-of-use.

To fill the gap between model-based user interface development approaches and
adaptive user interface frameworks, we propose enriching the usual model-based user
interface development, to include, in a seamless manner, the development of the
adaptation facilities required for adaptive user interfaces development. We propose a
method for the development of adaptive user interfaces called AL-BASIT (Adaptive
Model-Based User Interface Method), which extends usual model-based user
interface development methods to support the development of adaptive user interfaces
in a seamless way. Our proposal starts with requirements analysis to identify the tasks
that will drive the design. Also user, physical environment and platform
characteristics are collected to complete requirements analysis. In requirements
analysis, use cases are used to identify the tasks and to establish a comprehensible
channel of communication with the user, using an artefact understandable by the user
and the designer. This stage is completed gathering the required data from the
potential context-of-use for the application (user, platform and environment models).
Analysis stage in aimed at the transformation of the requirements into a specification
easier to handle, and usually in a more compact format. It also brings requirements

290 V. López-Jaquero et al.

analysis data closer to designer language. In our approach, we are using UML class
diagrams to describe the domain model. To support human role multiplicity, we
match each possible role a user can assume when using the user interface with the
tasks they can perform. After analysis stage, design phase take place using the
proposed tool. The design is based on the description of the identified tasks and their
relationships with the domain elements they make use of. The task model is enriched
describing the events to change from one task/action to another with the canonical
abstract user interface tools [1]. From this data, an abstract user interface is generated
which is independent of both modality and platform. Then, a translation is made to a
concrete user interface (CUI) expressed in USIXML (http://www.usixml.org) user
interface description language. The coordination between the CUI elements, the
application functional core and the final running code is performed by means of
connectors, as described in [2][3] This specification is adapted at runtime using a
transformational approach. The adaptation engine reasons about the possible
adaptation and preserves different usability properties according to the usability trade-
off specified in terms of I* specification technique [4].

Conclusions

In this paper we have introduced a method for the development of adaptive user
interfaces. It improves the usability of the system by adapting the user interface to the
context-of-use at runtime. Thus, the user interface is adapted according to the changes
in the context-of-use. For the design of adaptation engine, a multi-agent system is
used. The goals of the agents in the multi-agent system are guided by the adaptation
trade-off specified by the designer at design time using a goal-driven requirements
notation: I*.

Acknowledgements

We gratefully acknowledge the support of the spanish PBC-03-003 grant and the
SIMILAR network of excellence (http://www. similar.cc).

References

1. Constantine, L. Canonical Abstract Prototypes for Abstract Visual and Interaction
Design. Proceedings of DSV-IS. Springer Verlag, LNCS 2844, 2003.

2. Lopez-Jaquero, V., Montero, F., Fernandez-Caballero, A. Lozano, M.D. Towards
Adaptive User Interface Generation: One Step Closer To People. 5th International
Conference on Enterprise Information Systems, ICEIS 2003. Angers, France, 2003.

3. Lopez-Jaquero, V., Montero, F., Molina, J.P., Fernandez-Caballero, A., Gonzalez, P.
Model-Based Design of Adaptive User Interfaces through Connectors. DSV-IS 2003.
Springer Verlag, LNCS 2844, 2003.

4. Yu, E. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering' Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE'97) Jan. 6-8, 1997, Washington D.C., USA. pp. 226-235.

A Seamless Development Process of Adaptive User Interfaces 291

Discussion

[Fabio Paternò] How do you specify the adaptive behavior of your system?
[Victor Lopez-Jaquero] We use agents that exploit the specified rules
selecting the more appropriate rules according to the current context of use.
These agents include in their decision-making mechanism the XML
specification of the UI.

[Willem-Paul Brinkman] You mention that you want to conduct user tests to evaluate
your ideas. How do you envision you will do that?

[Victor Lopez-Jaquero] Conducting a series of small experiments to study
each individual issue separately.

[Willem-Paul Brinkman] This can become a very extensive task. Would you consider
a case study instead?

[Victor Lopez-Jaquero] We are considering a case study, of course, but you
can just validate a small set of issues at a time, because otherwise,
interdependecies can make evaluating the result an imposible task.

[Philippe Palanque] On one of your slides you said that you augmented CTT. Could
you please tell us more about this augmentation?

[Victor Lopez-Jaquero] We mainly added (canonical) actions to the
transitions between the tasks in the task model to allow the specification of
the dialogue.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 292-305, 2005.
 IFIP International Federation for Information Processing 2005

More Principled Design of Pervasive Computing Systems

Simon Dobson1 and Paddy Nixon2

1 Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

2 Department of Information and System Sciences, University of Strathclyde, Glasgow UK
paddy@cis.strath.ac.uk

Abstract. Pervasive computing systems are interactive systems in the large,
whose behaviour must adapt to the user's changing tasks and environment using
different interface modalities and devices. Since the system adapts to its
changing environment, it is vital that there are close links between the structure
of the environment and the corresponding structured behavioural changes. We
conjecture that predictability in pervasive computing arises from having a close,
structured and easily-grasped relationship between the context and the
behavioural change that context engenders. In current systems this relationship
is not explicitly articulated but instead exists implicitly in the system's reaction
to events. Our aim is to capture the relationship in a way that can be used to
both analyse pervasive computing systems and aid their design. Moreover,
some applications will have a wide range of behaviours; others will vary less, or
more subtly. The point is not so much what a system does as how what it does
varies with context. In this paper we address the principles and semantics that
underpin truly pervasive systems.

1 Introduction

Pervasive computing involves building interactive systems that react to a wide variety
of non-standard user cues. Unlike a traditional system whose behaviour may be
proved correct in an environmentally-neutral state space, a pervasive system's
behaviour is intended to change along with its environments. Examples include
location-based services, business workflows and healthcare support, gaming, and
composite access control policies.

Building pervasive computing systems currently revolves around one of two
paradigms: (a) event-handling systems, where behaviour is specified in terms of
reactions to events; and (b) model-based systems, in which rules are applied over a
shared context model. The former leads to fragmented application logic which is
difficult to reason about (in the formal and informal senses); the latter leaves a large
number of rules whose interactions must be analysed, a situation known to be quite
fragile. In addition, the majority of these approaches are premised on snapshot views
of the environmental state.

A truly pervasive system requires the ability to reason about behaviours beyond
their construction, both individually and in composition with other behaviours. This is
rendered almost impossible when a system's reaction to context is articulated only as

More Principled Design of Pervasive Computing Systems 293

code, is scattered across the entire application, and presents largely arbitrary
functional changes.

From a user perspective the design of pervasive computing systems is almost
completely about interaction design. It is vitally important that users can (in the
forward direction) predict when and how pervasive systems will adapt, and (in the
reverse direction) can perceive why a particular adaptation has occurred. The
hypothesis for our current work is that predictability in pervasive computing arises
from having a close, structured and easily-grasped relationship between the
context and the behavioural change that context engenders. In current systems
this relationship is not explicitly articulated but instead exists implicitly in the
system's reaction to events. Our aim is to capture the relationship in a way that can be
used to both analyse pervasive computing systems and aid their design.

In this paper we describe our rationale for taking a more principled approach to the
design of context-aware pervasive computing systems and outline a system that
encourages such an approach, focusing on its impact on interaction. Section 2
presents a brief overview of pervasive computing, focusing on the difficulties in
composing applications predictably. Section 3 explores pervasive computing from
first principles to articulate the underlying motivations and factors influencing system
behaviour. Section 4 describes a more principled design approach base on these
factors and how they impact the interface functionality of systems, while section 5
concludes with some open questions for the future.

2 Pervasive Computing

Pervasive computing can broadly be defined as calm technology that delivers the
correct service to the correct user, at the correct place and time, and in the correct
format for the environment[1]. Context, viewed alongside this definition, is all the
information necessary to make a useful decision in the face of real-world complexity.
More specifically, context is central to the development of several related trends in
computing: the increasing pervasiveness of computational devices in the environment,
the mobility of users, the connectivity of mobile users' portable devices and the
availability to applications of relevant information about the situation of use,
especially that based on data from physical sensors.

2.1 Context

Historically, the use of context grew from roots in linguistics [2]. The term was first
extended from implying inference from surrounding text to mean a framework for
communication based on shared experience [3]. The importance of a symbolic
structure for understanding was embraced in other fields such as [4,5,6] and
subsequently developed from a purely syntactic or symbolic basis to incorporate
elements of action, interaction and perception.

[7] divides context into two broad classes: primary context is derived directly from
sensors or information sources, while secondary context is inferred in some sense
from the primary context. A typical example is when GPS co-ordinates (primary

294 S. Dobson and P. Nixon

context) are converted into a named space (secondary context) through a look-up
process (inference).

More recently, in the setting of pervasive computing, context awareness was at
first defined by example, with an emphasis on location, identity and spatial
relationships [8,9]. This has since been elaborated to incorporate more general
elements of the environment or situation. Such definitions are, however, difficult to
apply operationally and modern definitions [10] generalize the term to cover “any
information that can be used to characterize situation”. Current work in the field
addresses issues including:

 developing new technologies and infrastructure elements, such as sensors,
middleware, communication infrastructures to support the capture, storage,
management and use of context.

 increasing our understanding of form, structure and representation of context;
 increasing our understanding of the societal impact of these new technologies and

approaches and directing their application;

A more detailed retrospective of the academic history of context can be found in
[10,11].

For this paper we conjecture that as we move away from the define by example
notions of context there is an increasing demand to establish the foundational models
for context. For pervasive computing systems there remains two fundamental
problems. Firstly, the centrality of context to the progress in the field of pervasive
computing demands new views on the theoretical underpinnings of context. For
example there is no widely accepted operational theory or formal definition of
context. There is also an immediate problem of providing to application developers
ways in which they can describe the context needs of their applications in manner that
is orthogonal to the application or business logic of the application. The programming
primitives, frameworks, and tools are still in their infancy.

3 The Semantics of a Context-Aware System

3.1 What Is Context?

By context we mean the environment in which an application is executing. This
might include the identity of a user, their location, the locations of other users, the
device they are using, the information, task workflows they are involved in, their
goals, strategies and so forth.

The intention of making a system context-aware is to allow the detailed behaviour
of the application to adapt to context while keeping the overall behaviour constant: a
messaging application always delivers messages, but may deliver messages
differently in different contexts. Interface modality [12] may not be purely a device
issue: a system might adapt its mode of interaction on the same device for different
circumstances (such as going from vision to voice on a handheld), or might choose to
switch devices while maintaining the same interaction style (such as making use of a
wall screens instead of a PDA for form input).

More Principled Design of Pervasive Computing Systems 295

Context is not monolithic: a given context may be composed of a number of
different facets. Moreover the facets available may change between different
executions of a context-aware application, for example when a new location system is
installed. This implies that context-aware systems have defaults for “missing”
contextual parameters, and that there is some mechanism for making new parameters
“useful” to a wide range of applications. We do not, for example, want a context-
aware system to be tied to a particular kind of location system, but want the location
systems available at run-time to be leveraged to their fullest extent. This is essential
for incremental, open deployment.

3.2 Behaviour

As stated above, the gross behaviour of an application should remain the same -
sorting algorithms remain sorting algorithms in whatever context they execute.
However, the detailed behaviour may change with context - the sorting criteria, for
example - and it is this detail, and the way behaviour varies, that we are seeking to
capture when talking about the semantics of context-aware systems.

One way to view this is as follows. Behaviour can be captured as a function from
inputs to outputs, with some of the inputs being captured during execution. Context
provides additional inputs describing the environment in which the function is being
evaluated. Two invocations of the same function with the same (external) inputs may
result in different behaviours because of changes in context.

We can therefore regard contextual variation as changing the contextual inputs to
an underlying “ordinary” function. In what follows, when we refer to “behaviour” and
“behavioural change'”we mean this change in parameterisation rather than an explicit
change in (the code of) the function being provided. (There is no loss of generality
here as the parameter might encode a function description being passed to a universal
evaluator.) From an implementation perspective this makes explicit the context on
which the function's detailed behaviour depends.

3.3 Design

While much of the research on pervasive computing has its roots in the programming
language and distributed systems communities, the chief design task is clearly one of
interfacing - creating systems that are usable as part of a larger real-world activity.
Moreover, the design task is both multimodal and dynamic.

Some pervasive computing systems will be unimodal, using a single device and
interaction structure. However it is widely accepted that many will be multimodal,
utilising a range of different devices across the lifetime of the interaction. This
includes multiple users with different constraints.

If we consider the ability to deploy context-aware applications into a shared space,
we must also deal with the interactions between these applications. This may involve
negative aspects such as sharing device capabilities between applications, prioritising
different (and possibly conflicting) decisions. However, there are also significant
potentially positive aspects including the case where one application provides context
for another that might not otherwise have been obtainable.

296 S. Dobson and P. Nixon

3.4 Behaviour Variation

Some applications will have a wide range of behaviours; others will vary less, or more
subtly. The point is not so much what a system does as how what it does varies with
context.

Much of computer science has been devoted to the notion of correctness - that is,
to ensuring that a system has a single behaviour, and that this is the behaviour the user
wants. Context-aware systems attack the underlying assumption of a single behaviour
that can be articulated, replacing it with the view that behaviour should change in
different circumstances.

Arbitrary behavioural changes would be incomprehensible to users, and would
make systems completely unusable. However, single behaviour is equally unattractive
in that it prevents a system adapting to context. There is therefore a spectrum in the
behavioural variation we are willing to accept (figure 1). In building a pervasive
computing system we are looking for the “sweet spot” between adaptability and
comprehensibility. However, this still leaves the issue of deciding how behaviour
should change and when changes should occur.

Fig. 1. The spectrum of behavioural variation.

An adaptive system adapts to something, and presumably adaptation happens when
that something changes. Actually this turns out to be a little simplistic - adaptation
may happen before or after a change - but the principle is valid. Since we are
discussing context-aware systems, we can reasonably expect a system to adapt to
changes in its context.

However, not all changes in context are significant or simple. A location-based
service's behaviour will not typically be different at every different location, so not all
location cues cause changes. Similarly location may not in itself be enough to define
the system's behaviour without contributions from other aspects of context.

More Principled Design of Pervasive Computing Systems 297

3.5 Describing the Semantics

We might regard context as having a “shape” over which the system operates. The
shape is multidimensional, defined by the various contextual parameters. The shape
will also have identifiable “significant” points or areas that will have meaning to the
user of the application, being perceived either as points where behaviour could (or
should) change, or as areas in which behaviour could (or should) remain the same.

Not only do the significant points in the context define when behaviour can change,
for a given application they will in many cases essentially define what new behaviour
will be selected. To take a concrete example of a service providing tourist
information, we expect the information being served both to change as we move and
to remain relevant to the location we are in. The interface's adaptive behaviour of the
system must therefore be closely related to the external world if that adaptation is to
be intuitive.

This leads to our defining observation about developing a semantics for context-
aware pervasive computing: in order for a pervasive computing system to be
predictable to users, the relationship between context and behaviour must be two-
way and (largely) symmetric. An application's behavioural variation should emerge
“naturally” from the context that causes it to adapt, and that variation mandates that
certain structures be visible in the model of context being used. It might only adapt to
large-grained changes, placing it at the static end of figure 1; alternatively it may
adapt to fine-grained changes, placing it at the dynamic end. The point is that the
application's position in the spectrum is not selected a priori but emerges naturally
from the shape of its context. If a context has a fine-grained structure it will support a
highly adaptable application; conversely a highly adaptive application needs fine-
grained context.

An application, in this view, consists of four elements:

1. A baseline behaviour parameterised by a context
2. The context space with its significant points and shapes defined
3. The behavioural space with its own structures
4. A mapping matching changes in context to corresponding changes in behaviour

The first element is a standard program with adaptation hooks, and perhaps significant
control structures for concurrency control and consistency maintenance. The third
element describes the parameters used to control the program's adaptation. The
second element describes the context expected by the application and the points at
which this context forces or precludes adaptation. The fourth element describes the
way in which the context adapts the program, matching significant changes in context
to changes in behaviour.

The issue of correctness reappears in another guise: instead of ensuring that a
single behaviour is implemented correctly (and that the correct behaviour is
implemented), we now need also to ensure that the behaviour varies correctly. The
problem is not as bad as it might appear, however: if the underlying function is
correct then the behaviour will be correct in some sense for each possible contextual
parameter. The issue is one of the appropriateness of selecting a detailed behaviour in
particular circumstances.

298 S. Dobson and P. Nixon

3.6 Towards More Principled Design

Making a function context-dependent essentially adds extra parameters to its
definition. However, adding extra parameters in principle allows these additional
degrees of freedom to affect the function's behaviour in arbitrary ways - a situation
that is probably more general than is consistent with predictable variation. The
challenge, then, is to provide additional parameters in such a way that their impact on
the function's behaviour is constrained to be predictable, and follows (in some sense)
the structure of the context.

(a) Location-dependent behaviour

(b) Adding role (c) Different roles in the same location

Fig. 2. Context dependence as parameter selection.

The essence of this problem is shown in figure 2. Figure 2(a) shows a function
whose behaviour (the lower circles) depends on the location in which it is executed
(the plane). Different regions of the plane map to the same behaviour, so the function
observed by the user will be the same as they move within this region. Change in
behaviour will only be observed when they move between regions.

Adding a extra contextual parameter, such as the person's role, adds another
dimension to the behavioural space1. The behaviour may not vary in some locations

1 Of course role is usually more complicated than this diagram suggests, but it will suffice for

the purposes of illustration.

More Principled Design of Pervasive Computing Systems 299

for a change in role (figure 2(b)); alternatively there may be a change for some roles
in some locations (figure 2(c)).
We claimed above that behaviour should only change “on cue” from context. This
suggests that the change in role needs to be clear in the interface.

From a design perspective, it would also be attractive for the changed behaviour to
depend structurally on the role and location: rather than making the change arbitrary,
it should emerge naturally from the parameter space. This has three major advantages:

1. It simplifies the development of the adaptive controls by placing all adaptation
functions in a single sub-system

2. It simplifies the development of the adaptive components by making the parameter
space clearly defined and explicitly articulated

3. It provides a “closed form” of the system's context-aware behaviour for analysis

4 A Mathematical Model of Principled Design

The discussion above leads us to consider a model in which primary context
conditions and constrains secondary context and behaviour. Formalising this notion
leads to a semantics of context-aware systems.

We have adopted category theory as our semantic framework, for three reasons:

1. it is naturally extensible, so we can deal with an extensible collection of contextual
parameters;

2. many of the well-known categorical structures suggest, at least intuitively, that
they may be useful in structuring context awareness; and

3. our eventual goal is to develop programming abstractions for pervasive computing
systems, and category theory's extensive use in language semantics may make this
step easier.

However, our presentation here requires no understanding of the detailed mathematics
of category theory: we focus here on the structural features of the approach and how it
impacts the design and analysis of interface functionality. We refer the interested
reader to [13] for a fuller treatment.

4.1 Modelling Primary and Secondary Context

A category is a generalisation of the familiar approach of sets and functions between
them. A category consists of a collection of objects and arrows between them. The
most familiar category is the category of sets whose objects are sets and whose arrows
are total functions between them. The arrows are constrained to be compositional and
associative, and each object has an identity arrow.

300 S. Dobson and P. Nixon

Fig. 3. Pointed structure within an object.

To each individual contextual parameter we assign an object in the category (e.g. a
set) denoting the values the parameter can take. In a location system based on
individual named spaces, for example, the “location” parameter would be represented
by an object N whose points (elements in the case of a set) are the space names.
In many cases the elements of a parameter are themselves structured. A typical
example (which occurs repeatedly) is a parameter structured as a partial order, pointed
set or lattice, where each element can be “included” in at most one other (figure 3).
For named spaces there is an arrow from the parameter object to itself, taking each
space to its containing space or to itself if it is a “top” space. By repeatedly applying
this operation we can navigate from a space up its container hierarchy. In figure 3 this
means that the inclusion morphism lt takes space c to space b, space b to space a, and
spaces a and d to themselves (we have omitted these arrows for clarity).

Fig. 4. Deriving secondary context.

Named spaces are probably secondary context, derived from a lower-level location
system such as GPS. GPS can be modelled as an object L of GPS co-ordinate pairs.
An obvious contextual constraint is the mapping between a GPS location and the
named space containing it. We can represent this as an arrow map: L N capturing
the “map” (figure 4). It is important to realise that this is a semantic characterisation
of what would implementationally be a lookup operation, the details which can be
abstracted in the analysis.

Figure 4 makes clear the structural relationship between the two parameters; A
region of L maps to an element of N in such a way that elements of the containing
region in L must map to an element of N containing the original element. map is
constrained to reflect the structure of one object in another, and it is this
correspondence that preserves meaning in the interface.

More Principled Design of Pervasive Computing Systems 301

4.2 Context as Behaviour

Current context-aware systems are not uniform, in the sense that much of a system's
behaviour is conditioned by information not held in a single context model. For the
purposes of analysis it is simpler to regard context in the wider sense as the sole
arbiter of behaviour: the system is functional with respect to its context. (We regard
this as a sound implementation strategy too.)

The easiest way to accomplish this to include the “real” parameters to the external
behaviour in the context. For a simple example, consider a wireless document system
which delivers a set of documents depending on the user's location. The corpus of
documents being managed can be represented as a contextual parameter (object) D
whose elements are possible sub-sets of documents being served related by set
inclusion.

We may now define an arrow serve: N D which selects the set of documents to
be served by the document system in each location. Although this arrow does not
define behaviour in the normal sense of describing exactly what will happen, it does
describe how the parameter passed to that behaviour will vary. We may therefore to
some extent treat D as a proxy for the behaviour of the system and study how this
“behaviour” changes with context.

4.3 Analysing the Structure of Behaviour

Even in this simple model there are a number of questions we may ask of the system.
Key to these is an understanding of the way in which different contexts select the
same behaviour. Using figure 4 as an example, there are a number of points in L that
map to the same element of N. This is captured by the categorical notion of a fibre:
given an element a of N the fibre of map lying over a is the sub-object of L that maps
to a under map. Similarly the fibres of serve above represent the spaces in which the
system will serve the same set of documents.

The significance of fibres is that they capture both those contexts in which the
system will behave the same and the points at which that behaviour changes.

4.4 Compound Context and Behaviour

One of the advantages of category theory is that it has several strong notions of
composition that can be used to create complex concepts by construction. A good
example of this is the use of products of context and behaviour.

If C and D are contexts (objects) we can create a product context C D whose
elements are ordered pairs of elements from C and D respectively. Moreover there is
an arrow between an element (i, x) and (j, y) if there is an arrow on C from i to j and
an arrow on D from x to y.

Such products represent the compound state of the system: If we take N and
another context P of people's identities, the compound context P N represents a
person in a named space. We can use this product contexts to contextualise behaviour
in the normal way, by specifying an arrow serve’: P N D defining how the
documents available vary with identity and place. The risk here is that such behaviour

302 S. Dobson and P. Nixon

will be arbitrary, in that there is no necessary relationship between the way behaviour
changes with identity and the way behaviour changes with identity and location. In
many cases we may wish to ensure that such a relationship is preserved.

If we have arrows serveto: P D and servein: N D we can model this by
constructing the arrow serve’ from the two more elementary arrows, in such a way
that serve’ preserves some of their features. For example, we might constrain serve’
so that it always serves a set of documents that includes the set identified by serveto –
location context may broaden the behaviour but always maintains the behaviour of
serveto as a “core”. Conversely we might force serve’ to never serve a larger set of
documents than permitted by serveto – the underlying arrow specifies the “extent” of
the behaviour. A third possibility is that location “adds nothing” to the behaviour,
when serve defines the same behaviour as serveto. Similar arguments apply to
servein.

These constructions allow us to potentially specify the constraints on complex
behaviours in terms of simpler behaviours. This is important both for tackling the
complexity of the system and ensuring its consistency. A user of serve’ that preserves
serveto as a core, for example, will be able to form a mental model in which (a) they
can rely on a certain minimum behaviour everywhere, and (b) their location may add
significant new documents. This consistency is vital to the usability of the system, and
can be made a direct consequence of its categorical model.

Similar techniques can be used when contextualising a product context, where (for
example) two behaviours B1 and B2 are combined to form a compound behaviour B1
B2 that specifies two aspects of the system independently. Again, composition of
underlying arrows can be used to constrain the way in which behaviour varies.

4.5 Composition and Conflict Analysis

Pervasive computing almost implies dynamic composition, in that we expect mobile
systems to be carried around by users and to “discover” resources as they move. This
brings positive and negative possibilities: new capabilities may become available very
easily, but systems may interact in undesired ways. A major challenge for analysis is
to detect such conflicts.

In certain simple cases we can both detect conflicts and identify “safe” zones when
two systems are composed. Suppose we have two systems with the same context and
behaviour, described by two arrows f,g : C D: for the wireless document server
these might be the public and private document servers. If we run both systems
together, we may ask whether they will both serve the same document set for a given
user and location. A categorical construction called an equaliser captures the sub-
object C’ of C in which f and g behave the same. If we can ensure that the system will
remain in this region C’, the systems may be composed safely; if it strays outside then
the two systems diverge. Another possibility is to force g (for example) to serve as a
core or extent of f.

In both cases the composition of systems is captured cleanly within the categorical
model, and can be analysed using standard techniques. This may in turn lead to
improved implementation techniques.

More Principled Design of Pervasive Computing Systems 303

4.6 Designing “Graspable” Systems

Systems analysis, while important, is in many ways less interesting than systems
design: we want to develop pervasive computing systems that are usable and
predictable by design, using a model that both aids in this process and in the analysis
of the results.

The fibre structure of arrows provides a powerful technique for designing systems
as well as analysing them. Suppose we want to design our wireless document server
so that it serves a set d1 of documents in those places in the vicinity of a place n1, and
another set d2 in the vicinity of n2. If we constructed this system from scratch we
would need to ensure that it responded to location events in the correct manner - an
arduous testing process.

However, we can observe that the system behaves the same within a fibre -
changes in context that remain within a fibre do not affect the behaviour. We need
only ensure that all the places around n1 lie in the fibre of d1 to be convinced that the
system will behave as required.

From a user perspective, in order to be predictable a change in behaviour must be
accompanied by a perceptible change in the context that “makes sense” for the
application at hand. Changes in behaviour occur when context moves between fibres.
If we ensure that these changes correspond to external contextual cues that will
convey the need for behavioural change to the user, then the user will be able to
develop an appropriate mental model of the way in which the behaviour changes in
response to context. The cues in the outside world are reflected exactly in the fibre
structure of the model.

We claimed in section 4 that, in order for a pervasive computing system to be
comprehensible, the relationship between context and behaviour needed to be largely
symmetrical. It is this matching of fibre structure to external cues that captures this
symmetry, either constructively (for design) or analytically (for analysis).

Although the matching of cues to fibre transitions is application-dependent and
generally external to the model, it is sometimes possible to capture the cues within the
structure of the category. If, for example, we can identify the context points at which
behaviour should change, we can often identify the “internal” points where it should
remain the same, corresponding to the fibre over the desired behaviour. These regions
- sub-objects of the overall context - can have their behaviour described individually,
with the “full” behaviour coming by composition in a way that will detect many
conflicts automatically. This means that a user-centred design that identifies the
adaptation points in the environment can be used directly to construct a mathematical
description of the system being constructed, carrying usability concerns directly into
the system model.

5 Conclusion

We have motivated using a more principled approach to the design and development
of context-aware pervasive computing systems, and presented a formal approach that
captures some of the essential driving forces in a natural and compositional way. We
have shown how certain aspects of usability and predictability in the requirements for

304 S. Dobson and P. Nixon

a pervasive computing system can be given a formal realisation within a system
model suitable for use as a basis for analysis and design.

Perhaps more than any other potentially mainstream technology, pervasive
computing requires that we take an automated approach to system composition and
variation - the alternative would constrain deployment to constellations of devices and
information sources that could be described a priori. This in turn means that we need
to be able to state very precisely the way in which system behaviour varies. This is the
point at which our work diverges from that in the ambient calculus[14] or
bigraphs[15] - two very prominent and influential formal treatments of mobile
systems - in that we sacrifice the precise characterisation of system behaviour in
favour of broad-brush analysis. We also do not privilege location, regarding it as just
one of the possible contextual parameters to be studied.

The obvious counter in this formulation is that the baseline behaviour needs to
encapsulate all possible adaptations, which are then selected by context. While this is
correct to an extent, we should differentiate between the abstract semantic model of a
context-aware application and its concrete realisation. One would not necessarily pass
context as a parameter to a function: it might be preferable to allow the function to
access a shared context model, and provide some templated mechanism for this model
to affect its behaviour. There are, however, serious engineering problems to be
overcome in developing a programming model under this model.

Although we have not investigated it in this paper, a design approach such as we
propose needs to be backed by an engineering methodology. In particular we have
largely elided the way in which a designer would decide on the correct formulation
for context and behaviour, or check that his choices relate correctly to the users'
perceptions of the system. While traditional analysis and design methods can help
address these problems, there is also a need to deploy detailed usability evaluations -
possibly modified for pervasive computing - to inform the feedback loop. This is a
subject that is outside our expertise but that we would be keen to explore further.

It seems unlikely that the techniques described are sufficient to address the full
range of context-aware behaviours, so there is a major open question in the
applicability of the techniques to real-world applications - something we are
investigating at present. We are also addressing the limitation of the model to
“immediate” context, where only the current situation (and not the past or possible
future) affect behaviour. However, we believe that “closed form” expressions of
context awareness are a key enabler for building the next generation of complex
pervasive computing systems.

References

1. Weiser, M..The computer for the 21st century. Scientific American (1991)
2. Winograd, T. Architecture for context. Human Computer Interaction 16 (1994) 85-90
3. Minsky, M. A Framework for Representing Knowledge. In The Psychology of Computer

Vision. McGraw Hill (1975)
4. Brooks, R. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation 2 (1986)
5. A.Draper, B., Collins, R.T., Brolio, J., Hansen, A.R., Riseman, E.M. The schema system.

International Journal of Computer Vision 2 (1989)

More Principled Design of Pervasive Computing Systems 305

6. Bajcsy, R. Active perception. Proceedings of the IEEE 1 (1988) 996-1006
7. Salber, D., Dey, A., Abowd, G. The Context Toolkit: aiding the development of context-

enabled applications. In Proceedings of the ACM Conference on Computer-Human
Interaction, CHI'99. (1999) 434-441

8. Ward, A., Jones, A., Hopper, A. A new location technique for the active office. IEEE
Personal Comunications 4 (1997) 42-27

9. Rodden, T., K.Cheverest, Davies, K., Dix, A. Exploiting context in HCI design for mobile
systems. In Workshop on Human Computer Interaction with Mobile Devices. (1998)

10. Dey, A. Understanding and using context. Personal and Ubiquitous Computing 5 (2001) 4-7
11. Crowley, L., Coutaz, J., Rey, G., Reignier, P. Perceptual components for context aware

computing. In Proceedings of Ubicomp 2002. (2002)
12. Calvary, G., Coutaz, J., Thevenin, D. A unifying reference framework for the development

of plastic user interfaces. In Proceedings of EHCI'01. Volume 2254 of Lecture Notes in
Computer Science., Springer Verlag (2001)

13. Dobson, S., Nixon, P. Towards a semantics of pervasive computing (just the category
theory). Technical report, Department of Computer Science, Trinity College Dublin (To
appear)

14. Cardelli, L., Gordon, A. Mobile ambients. In Nivat, M., ed. Foundations of software science
and computational structures. Volume 1378 of LNCS. Springer Verlag (1998)

15. Jensen, O.H., Milner, R. Bigraphs and mobile processes. Technical Report UCAM-CL-TR-
570, University of Cambridge Computer Laboratory (2003)

Discussion

[Nick Graham] This is a semantic framework that is instantiated over a specific
application. This seems to require the modeller to anticipate the possible contexts or
compositions that may arise.

[Simon Dobson] This is less a problem than with other approaches. In effect,
we can define compositions without having to specify what kinds of things
are being composed. This is sufficiently rich to allow interesting analyses.
There are a small set of composition operators that seem to recur frequently:
although we have to select which operator to use when we encounter a new
contextual parameter, we often don’t need to know its details to do
something meaningful.

[Helmut Stiegler] Category theory is all about commutative diagrams. You did not
show any such examples, in which you can apply such diagrams. Do you have some ?

[Simon Dobson] Yes, we have them used. I suppressed them here on
purpose. You will be able to find them in a technical report.

[Gerrit van Der Veer] How do the notions of “conflict” and “problem” relate to the
framework ?

[Simon Dobson] These notions are not automatically specified, but have to
be stated explicitly in order to reason about them.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 306-324, 2005.
 IFIP International Federation for Information Processing 2005

Towards a New Generation of Widgets for Supporting
Software Plasticity: The “Comet”

Gaëlle Calvary, Joëlle Coutaz, Olfa Dâassi, Lionel Balme, Alexandre Demeure

CLIPS-IMAG,
BP 53, 38041 Grenoble Cedex 9, France

{Gaelle.Calvary, Joelle.Coutaz}@imag.fr

Abstract. This paper addresses software adaptation to context of use. It goes
one step further than our early work on plasticity [5]. Here, we propose a
revision of the notion of software plasticity that we apply at the widget level in
terms of comets. Plasticity is defined as the ability of an interactive system to
withstand variations of context of use while preserving quality in use where
quality in use refers to the ISO definition. Plasticity is not limited to the UI
components of an interactive system, nor to a single platform: adaptation to
context of use may also impact the functional core, it may have an effect on the
nature of the connectors, and it may draw upon the existence of multiple
platforms in the vicinity to migrate all or portions of the interactive system. A
new reference framework that structures the development process of plastic
interactive systems is presented to cover these issues. The framework is then
applied at the granularity of widgets to provide the notion of a comet. A comet
is an introspective widget that is able to self-adapt to some context of use, or
that can be adapted by a tier-component to the context of use, or that can be
dynamically discarded (versus recruited) when it is unable (versus able) to
cover the current context of use. To do so, a comet publishes the quality in use
it guarantees, the user tasks and the domain concepts that it is able to support,
as well as the extent to which it supports adaptation.

1 Introduction

Mobility coupled with the development of a wide variety of access devices has
engendered new requirements for HCI such as the ability of interactive systems to run
in different contexts of use. By context of use we mean a triple <user, platform,
environment> where the user denotes the archetypal person who is intended to use the
interactive system; the platform refers to the hardware and software devices available
for sustaining the user interaction; the environment describes the physical and social
conditions where the interaction takes place. To master the diversity of contexts of
use in an economical and ergonomic way, the plasticity property has been introduced
[31]. Basically, plasticity refers to the adaptation to context of use that preserves the
user’s needs and abilities. For example, FlexClock [15] is a clock that expands or
shrinks its user interface (UI) when the user resizes the window (Fig. 1). The time
remains readable during and after the adaptation.

Towards a New Generation of Widgets for Supporting Software Plasticity 307

Fig. 1. FlexClock, an example of adaptation to the platform.

When applied at the widget level, the plasticity property gives rise to a new
generation of widgets: the comets (COntext of use Mouldable widgETs). As a simple
example, a set of radio buttons that shrinks into a combo box is a comet (Fig. 2).

Fig. 2. Three graphical mockups supporting the same task “selecting one option among a set of
options” through a) a label and radio buttons; b) a label and a combo box; c) a combo box
incorporating the label. The example concerns the specification of the target platform (PC,
PDA, telephone) for a centralized UI.

This paper presents our notion of comets. First we present new advances in plasticity
to provide sound foundations for their elaboration. Then we focus on the comets per
se considering both the design and run time perspective.

2 Foundations for Comets: Advances in Plasticity

This section focuses on the lessons learned from experience that directly underpin the
notion of comets. First, we propose a new definition for plasticity, then we examine
the property from both a user and a system centered perspective.

(b) Label and combo box

(c) Combo box incorporating the label

(a) Label and radio buttons

308 G. Calvary et al.

2.1 A New Definition of Plasticity

Plasticity was previously defined as “the capacity of a user interface to withstand
variations of context of use while preserving usability” [31]. Based on our experience,
we have identified three reasons for revising the definition:

 In reality, plasticity is not limited to the UI components but may also impact the
functional core. This occurs typically with services discovery. For example,
because Bob has moved and is now in a place that makes a new service available,
this service now appears on his PDA. The desktop is reshuffled (or tuned) to
incorporate this new service and support an opportunistic interaction. Thus, the
scope of the definition must be enlarged: plasticity must refer to the capacity of an
interactive system, and not only to its UI, to adapt to the context of use;

 The current definition focuses on the preservation of usability only. As a result,
utility is implicit. To make explicit the possibility to specify requirements
concerning the preservation of functional (and not only non functional) properties
(e.g., task accomplishment), the scope of the definition must be enlarged. To do so,
we refer to quality in use instead of just usability. As defined by ISO [18], quality
in use is based on internal and external properties (Fig. 3) including usability (Fig.
4);

 The definition is not operational enough. Due to ISO, the definition is now
reinforced by a set of reference characteristics (factors), sub-characteristics
(criteria) (Fig. 4) and metrics [19]. The framework QUIM (Quality in Use
Integrated Map) [29] also contributes in this area by relating data, metrics, criteria
and factors. A sound basis exists in HCI for usability ([1] [17] or more specifically
[32] for dialog models).

Based on this new definition, an interactive system is said to be “plastic for a set of

properties and a set of contexts of use” if it is able to guarantee these properties whilst
adapting to cover another context of use.

Fig. 3. Relationships between quality in use and internal and external qualities.
Extracted from [18].

The properties are selected during the specification phase among the set of
characteristics and sub-characteristics elicited by ISO (Fig. 4). Thus, plasticity is not
an absolute property: it is specified and evaluated against a set of relevant properties
(e.g., the latency and stability of the interactive system with regard to the “efficiency”
characteristic, “time behavior” sub-characteristic).

Towards a New Generation of Widgets for Supporting Software Plasticity 309

Fig. 4. Quality models for quality in use and internal and external qualities. These ISO models
provide a sound basis for specifying and evaluating the extent to which an interactive system is
supposed to be plastic. Extracted from [18].

The next section presents how to plastify an interactive system from a user centered
perspective.

2.2 Plasticity from a User Centered Perspective

Whilst plasticity has always been addressed from a centralized perspective [5] (the UI
was locally tuned as in FlexClock [15]), it is now obvious that ubiquitous computing
favors the distribution of the interactive system among a set of platforms. As a result,
two means are now available for adapting:
– Recasting the interactive system: this consists in reshuffling the UI, the functional

core or the connector between both of these parts locally without modifying its
distribution across the different platforms. Figure 1 provides an example of
recasting;

– Redistributing the interactive system: it consists in migrating all (total migration)
or part of (partial migration) the interactive system across the different platforms.
Partial migration has been introduced by Rekimoto’s painter metaphor [27] [4] and
is now a major issue in HCI.

In ubiquitous computing, the notion of platform is no longer limited to an

elementary platform, i.e., a set of physical and software resources that function
together to form a working computational unit [7]. The notion of platform must

310 G. Calvary et al.

definitely be seen as a cluster, i.e., a composition of elementary platforms that appear
and disappear dynamically. For example, when Alice arrives in Bob’s vicinity, her
laptop extends the existing cluster composed of Bob’s laptop, the PDA and the mobile
phone. Bob’s current interactive system can partially or fully migrate to Alice’s
laptop. Typically, to obtain a larger screen, it could be a good option to “bump” [16]
the two laptops and split the interactive system between both of them (partial
migration) (the bumping is illustrated in Figure 5 with two desktops). But when Bob’s
laptop battery is getting low, a full migration to Alice’s laptop seems to be the best
option as the screens of the PDA and mobile phone are too small to support a
comfortable interaction.

Fig. 5. A partial migration enabled by a top-to-top composition of the screens. Extracted
from [9].

The granularity for distribution may vary from the application level to the pixel level
[7]:
– At the application level, the user interface is fully replicated on the platforms of the

target cluster. If the cluster is heterogeneous (e.g., is comprised of a mixture of
PC’s and PDA’s), then each platform runs a specific targeted user interface. All of
these user interfaces, however, simultaneously share the same functional core;

– At the workspace level, the user interface components that can migrate between
platforms are workspaces. A workspace is an interaction space. It groups together a
collection of interactors that support the execution of a set of logically connected
tasks. In graphical user interfaces, a workspace is mapped onto the notions of
windows and panels. The painter metaphor presented in Rekimoto’s pick and drop
[27] [4] is an example of a distribution at the workspace level: the palettes of tools
are presented on a PDA whereas the drawing area is mapped onto an electronic
white board. Going one-step further, the tools palette (possibly the drawing area)
can migrate at run time between the PDA and the electronic board;

– At the domain concept level, the user interface components that can be distributed
between platforms are physical interactors. Here, physical interactors allow users
to manipulate domain concepts. In Rekimoto’s augmented surfaces, domain
concepts, such as tables and chairs, can be distributed between laptops and
horizontal and vertical surfaces. As for Built-IT [26], the topology of the rendering

Towards a New Generation of Widgets for Supporting Software Plasticity 311

surfaces matters: objects are represented as 3D graphic interactors on laptops,
whereas 2D rendering is used for objects placed on a horizontal surface;

– At the pixel level, any user interface component can be partitioned across multiple
platforms. For example, in I-LAND [30], a window may simultaneously lie over
two contiguous white boards (it is the same case in Figure 5 with two desktops).
When the cluster is heterogeneous, designers need to consider multiple sources of
disruption. For example, how to represent a window whose content lies across a
white board and a PDA? From a user’s perspective, is this desirable?

Migration may happen on the fly at run time or between sessions:

 On the fly migration requires that the state of the functional core is saved as well as
that of the user interface. The state of the user interface may be saved at multiple
levels of granularity: with regard to the functional decomposition promoted by
Arch [3], when saved at the Dialogue Component level, the user can pursue the job
from the beginning of the current task; when saved at the Logical Presentation or at
the Physical Presentation levels, the user is able to carry on the current task at the
physical action level, that is, at the exact point within the current task. There is no
discontinuity;

 Migration between sessions implies that the user has to quit, then restart the
application from the saved state of the functional core. In this case, the interaction
process is heavily interrupted.

Recasting and redistribution are two means for adaptation. They may be processed

in a complementary way. A full migration between heterogeneous platforms will
typically require a recasting for fitting to a smaller screen. Conversely, when the user
enlarges a window, a partial migration may be a good option to get a larger
interaction surface by using a nearby platform. The next section addresses plasticity
from a system’s perspective.

2.3 Plasticity from a System Centered Perspective

The CAMELEON reference framework for plasticity [7] provides a general tool for
reasoning about adaptation. It covers both recasting and redistribution. It is intended
to serve as a reference instrument to help designers and developers to structure the
development process of plastic interactive systems covering both the design time and
run time.

The design phase follows a model-based approach [25] (Fig. 6). A UI is produced
for a set of initial models according to a reification process:
– The initial models are specified manually by the developer. They set the

applicative domain of the interactive system (concepts, tasks), the predicted
contexts of use (user, platform, environment), the expected quality of service (a set
of requirements related to quality in use and external/internal qualities) and the
adaptation to be applied within as well as outside the current context of use
(evolution, transition). The domain models are taken from the literature. Emerging
works initiated by [12] [28] deal with the definition and modeling of context of
use. The Quality Models can be expressed with regard to the ISO models presented

312 G. Calvary et al.

in section 2.1. The Evolution Model specifies the reaction to be performed when
the context of use changes. The Transition Model denotes the particular Transition
User Interface to be used during the adaptation process. A transition UI allows the
user to evaluate the evolution of the adaptation process. In Pick and Drop [27], the
virtual yellow lines projected on the tables are examples of transition UIs. All of
these initial models may be referenced along the development process from the
domain specification level to the running interactive system;

– The design process is a three-step process that successively reifies the initial
models into the final running UI. It starts at the concepts and tasks level to produce
the Abstract User Interface (Abstract UI). An abstract UI is a collection of related
workspaces called interaction spaces. The relations between the interaction spaces
are inferred from the task relations expressed in the task model. Similarly,
connectedness between concepts and tasks is inferred from the concepts and tasks
model. An abstract UI is reified into a Concrete User Interface (Concrete UI). A
concrete UI turns an abstract UI into an interactor-dependent expression. Although
a concrete UI makes explicit the final look and feel of the Final User Interface
(Final UI), it is still a mockup that runs only within the development environment.
The Final UI generated from a concrete UI is expressed in source code, such as
Java and HTML. It can then be interpreted or compiled as a pre-computed user
interface and plugged into a run-time infrastructure that supports dynamic
adaptation to multiple targets.

At any level of reification:
– References can be made to the context of use. We identify four degrees of

dependencies: whether a model makes hypothesis about the context of use; a
modality; the availability of interactors; or the renderer used for the final UI. From
a software engineering perspective, delaying the dependencies until the later stages
of the reification process, results in a wider domain for multi-targeting. Ideally,
dependencies to the context of use, to modalities and to interactors are associated
with the concrete UI level (Fig. 7 a). In practice, the task model is very often
context of use and modality dependent (Fig. 7b). As figure 7 shows, a set of four
sliders (or stickers) can be used to locate the dependencies in the reification
process. The movement of the stickers is limited by the closeness of their
neighbour (e.g., in Figure 7b, the interactor sticker has a wide scope for movement
between the concepts and tasks level and the final UI level, respectively
corresponding to the position of the modality and renderer stickers);

– References can be made to the quality properties that have guided the design of the
UI at this level of reification (cf. arrows denoted as “reference” in Figure 6);

– A series of abstractions and/or reifications can be performed to target another level
of reification;

– A series of translations can be performed to target another context of use.

Reifications and translations may be performed automatically from specifications, or
manually by human experts. Because the automatic generation of user interfaces has
not found wide acceptance in the past [23], the reference framework makes possible
manual reifications, abstractions and translations (Fig. 6).

Towards a New Generation of Widgets for Supporting Software Plasticity 313

Target 1

Concrete
interface

Final UI for
Config 1

Abstract
interface

Target 2

SCE

Runtime Infrastructure

Concepts
Tasks

SCE

Concrete
interface

Final UI for
Config 2

Abstract
interface

Concepts
Tasks

Transition

Evolution

- Adaptation -

Platform

User

- Context of use -

Environment

Ext/Internal

In Use

- Quality -

Transition

Evolution

- Adaptation -

Platform

User

- Context of use -

Environment

Ext/Internal

In Use

- Quality -

SCEObserved
models

: Initial models
: Transitory and final models

SCE : Sensing the context of use ; Computing the reaction ; Executing the reaction
Observed models: models at run time

: Reference
: Translation

: Reification
: Abstraction

Fig. 6. The Reference Framework for supporting plastic user interfaces. The picture shows the
process when applied to two distinct targets. This version is adapted from [7 where the quality
models defined in 2.1 are now made explicit. Whilst reifications abstractions and translations
are exhaustively made explicit, only examples of references are provided. In the example, the
reference to the evolution and transition models is made at the latest stage (the final UIs).

Final
interface

Final
interface

Target 1
Concrete
interface

Concrete
interface

Target 2

(a)

Final
interface

Final
interface

Concrete
interface

Concrete
interface

(b)

Context of use
Modality
Interactor

Renderer

Context of use
Modality

Renderer

Interactor

Abstract
interface

Target 1

Abstract
interface

Concepts
Tasks

Target 2
Concepts

Tasks

Abstract
interface

Concepts
Tasks

Fig. 7. Two instanciations of the design reference framework. The dependencies to the context
of use, modalities, interactors and renderer are localized through stickers that constraint each
other in their movement.

As for any evolutive phenomenon, the adaptation at run time is structured as a
three-step process: sensing the context of use (S), computing a reaction (C), and
executing the reaction (E) [6]. Any of these steps may be undertaken by the final UIs

314 G. Calvary et al.

and/or an underlying run time infrastructure (Fig. 6). In the case of distributed UIs,
communication between components may be embedded in the components
themselves and/or supplied by the runtime infrastructure. As discussed in [24], when
the system includes all of the mechanisms and data to perform adaptation on its own
(sensing the context of use, computing and executing the reaction), it is said to be
close-adaptive, i.e., self-contained (autonomous). FlexClock is an example of close-
adaptive UI. Open-adaptiveness implies that adaptation is performed by mechanisms
and data that are totally or partially external to the system. FlexClock would have
been open-adaptive if the mechanisms for sensing the context of use, computing the
reaction or executing the reaction had been gathered in an external component
providing general adaptation services not devoted to FlexClock.

Whether it is close-adaptive or open-adaptive, dynamic reconfiguration is best
supported by a component-connector approach [24] [11] [14]. Components that are
capable of reflection (i.e., components that can analyze their own behavior and adapt)
support close-adaptiveness [21]. Components that are capable of introspection (i.e.,
components that can describe their behavior to other components) support open-
adaptiveness.

The next section applies these advances to the design and run time of comets.

3 The Notion of Comet

This section relies on the hypothesis that adaptation makes sense at the granularity of
a widget. The validity of this hypothesis has not been proven yet, but is grounded in
practice: refining an abstract UI into a concrete UI is an experimental composition of
widgets with regard to their implicit functional (versus non functional) equivalence or
complementarity. Basically, no toolkit makes explicit the functional equivalence of
widgets (e.g., the fact that the three versions of Figure 2 are functionally but not non
functionally equivalent: they support the same task of selecting one option among a
set of options, but differ in many ways, in particular, in their pixels cost). Based on
these statement and hypothesis, this paper introduces the notion of comet. It is first
defined then examined from both a design and run time perspective. It is finally
compared to the state of the art.

3.1 Definition

A comet is an introspective interactor that publishes the quality in use it guarantees
for a set of contexts of use. It is able to either self-adapt to the current context of use,
or be adapted by a tier-component. It can be dynamically discarded (versus recruited)
when it is unable (versus able) to cover the current context of use.

The next section presents a taxonomy and a model of comets from a design
perspective.

Towards a New Generation of Widgets for Supporting Software Plasticity 315

3.2 The Comet from the Design Perspective

Based on the definition of comets and the advances in plasticity (section 2.3), we
identify three types of comets (Fig. 8):
– Introspective comets refer to the most basic kind of comets, i.e. interactors that

publish their functional and non functional properties (Fig. 9). The functional
properties can include adaptation abilities (e.g., sensing the context of use,
computing and/or executing the reaction), or be limited to the applicative domain
(e.g., selecting one option among a set of options). For instance, the “combo box”
comet (Figure 2) does not have to include the adaptation mechanisms for switching
from one form to another one. It just has to export what it is able to do (i.e., single
selection, the task it supports) and at which cost (e.g., footprint, interaction
trajectory) to be called a comet;

– Polymorphic comets are introspective comets that embed (and publish because of
their introspection) multiple versions of at least one of their components. The
polymorphism may rise at the functional core level (i.e., the comet embeds a set of
algorithms for performing the user task; the algorithms may vary in terms of
precision, CPU cost, etc.), at the connector level between the functional core and
the UI components (e.g., file sharing versus sockets), or at the UI level (e.g.,
functional core adaptor, dialog controller, logical or physical presentations with
regard to Arch 3). A comet incorporating the three versions of Figure 2 for
selecting one option among a set of options would illustrate the polymorphism at
the physical level. Polymorphism provides potential alternatives in case of a
change in the context of use. For instance, Figure 2c is more appropriate than
Figure 2a for small windows. The mechanism for switching from one form to
another one may be embedded in the comet itself and/or supplied by a tier-
component (e.g. the runtime infrastructure – see section 2.3);

– Self-adaptive (or close-adaptive) comets are comets that are able to self-adapt to
the context of use in a full autonomous way. They embed mechanisms for sensing
the context of use, computing and executing the reaction. The reaction may be
based on polymorphism in case of polymorphic comets.

Close-adaptiveness

Introspection

Polymorphism

Open-adaptiveness

Fig. 8. A taxonomy of comets.

Introspection is the keystone capability of the comet. The properties that are published
can be ranked against two criteria (Fig. 9): the type of the property (functional versus
non functional) and the type of the service (domain versus adaptation). Examples of
properties are provided in Figure 9. Recent research focuses on the notion of
continuity of interaction [13]. The granularity of distribution and state recovery
presented in section 2.2 belong to this area.

316 G. Calvary et al.

Functional

Domain

Type of property
Non functional

Adaptation

Type of service

Tasks and
services
provided

Sensing the context of use
Computing a reaction

(recasting and/or migration)
Executing the reaction

ISO quality in
use properties

(cf 2.1)

Continuity of interaction :
granularity for

distribution and state
recovery (cf 2.2)

Introspective comets

Self-adaptive comets

Polymorphic comets

Fig. 9. A taxonomy of properties for structuring introspection.

Based on the nature of the domain task, a difference can be made between general
comets that support basic tasks (i.e., those that are supported by classical widgets such
as radio buttons, labels, input fields or sliders) and specific comets that support
specific tasks. For instance, PlasticClock may be seen as a specific comet that
simultaneously makes observable the time at two locations, Paris and New York
(Figure 10). PlasticClock is polymorphic and self-adaptive. Its adaptation relies on
two kinds of polymorphism, thus extending FlexClock:
– Polymorphism of abstraction: PlasticClock is able to compute the times in both an

absolute and a relative way. The absolute version consists in getting the two times
on web sites. Conversely, the relative way requests one time only and computes the
second one according to the delay;

– Polymorphism of presentation: as shown in Figure 10, PlasticClock is able to
switch from a large presentation format putting the two times side by side, to a
more compact one gathering the two times on a same clock. Two hands (hours and
minutes) are devoted to Paris. The third one points out the hours in New York (the
minutes are the same). Allen’s relations [2] provide an interesting framework for
comparing these two presentations from a non functional perspective.

(a) A large presentation (b) A compact presentation

Fig. 10. PlasticClock.

The specific comets raise the question of the threshold between a comet and an
interactive system. Should PlasticClock be considered as a comet or an interactive
system? To our understanding, the response is grounded in software engineering: it

Towards a New Generation of Widgets for Supporting Software Plasticity 317

depends on the expected level of reusability. As a result, comets can be designed as
interactive systems. Figure 11 provides an UML class diagram obtained by applying
both the reference framework and the taxonomy of comets for modeling a comet:
– A comet may be defined at four levels of abstraction. The most abstract one, called

abstraction, is mandatory. This level may serve as starting point for producing
abstract, concrete and final interaction objects (AIO, CIO, FIO) through a series of
reifications and/or abstractions;

+isPolymorphic(Context c)
+isSelfAdaptive(Context c)
+isPlastic(Context c , Property p)

Comet

Abstraction

AbstractInteractionObject

ConcreteInteractionObject

FinalInteractionObject

+getConcepts()
+getTask()

+getStyle()
+isTypical(Context c)

1..*
1..*

is reified into
is abstracted into

1..*
1..*

is reified into
is abstracted into

1..*
1..*

is reified into
is abstracted into

+getInteractionSpaces()

+evolutionModel
+transitionModel

+isContextofUseDependent()
+isModalityDependen t()
+isInteractorDependent()
+isRendererDependent()

IntrospectiveComponent

publishes

ContextOfUse
+platform
+user
+environment

Property
+name
+metric
+value

1..* 1..*

QoS

0..*

0..*

0..*

1..*

+getContext()
+setContext()
+getState()
+setState()
+start()
+stop()

+getAPI()

+getReferenceFramework()

Fig. 11. A comet modeling taking benefit from both the reference framework and the taxonomy
of comets.

The next section deals with the comets at run time.
– At any level of reification, comets are introspective, i.e., aware of and capable of

publishing their dependencies and quality of service (QoS). The dependencies are
expressed in terms of context of use, modality, interactor and renderer. The quality
of service denotes the quality in use the comet guarantees on a set of contexts of
use. It is expressed according to a reference framework (e.g. ISO) by a set of
properties. In a more general way, introspective components publish their API;

318 G. Calvary et al.

– Specific information and/or services are provided at each level of reification. At
the abstraction level, they are related to the concepts and task the comet supports;
at the AIO level, the structure of the comet in terms of interaction spaces; at the
CIO level, the style of the comet (e.g., the style “button”) and its typicality for the
given purpose (e.g., whether it is or not typical to use radio buttons for specifying
the platform – Figure 2a); at the final level, the effective context of use and the
interaction state of the comet. Managing the interaction state (i.e., maintaining,
saving and restoring the state of the comet) is necessary for performing adaptation
in a continuous way;

– The comets may embed an evolution and a transition model for driving adaptation.
The comet publishes its polymorphism and self-adaptiveness capabilities for a set
of contexts of use. Going one step further, it directly publishes its plasticity
property for a set of properties P and a set of contexts of use C. It is plastic if any
property of P is preserved for any context of C.

3.3 The Comet from the Run Time Perspective

This section addresses the execution of comets. It elicits a set of strategies and
policies for deploying plasticity. It proposes a software architecture model for
supporting adaptation.

We identify four classes of strategies:
– Adaptation by polymorphism. This strategy preserves the comet but changes its

form. The change may be performed at any level of reification according to the
three following cardinalities, 1-1, 1-N, N-1 depending on the fact that the original
form is replaced by another one (cardinality 1-1), by N forms (cardinality 1-N) or
that N forms, including the original form, are aggregated into an unique one
(cardinality N-1). For instance, in Figure 2, when the comet switches from a to b, it
performs a 1-1 polymorphism: the radio buttons are replaced with a combo box.
When it switches from b to c, it performs a 2-1 polymorphism (respectively
switching from c to b is a 1-2 polymorphism);

– Adaptation by substitution. Conversely to the adaptation by polymorphism, this
strategy does not preserve the comet. Rather, it is replaced by another one
(cardinality 1-1) or N comets (cardinality 1-N) or is aggregated with neighbor
comets (cardinality N-1);

– Adaptation by recruiting consists in adding comets to the interactive system. This
strategy supports, for instance, a temporary need for redundancy [1];

– Adaptation by discarding is the opposite strategy to the recruiting strategy. Comets
may be suppressed because the tasks they support no longer make sense.

At run time, the strategies may be chosen according to the evolution model of the
comet. The selected strategy is performed according to a policy. The policies depend
on the autonomy of the comets for processing adaptation. We identify three types of
policies:
– An external non-concerted policy consists in fully subcontracting the adaptation.

Everything is performed externally by a tier-component (e.g. another comet or the
runtime infrastructure) without any contribution of the comet. This policy is
suitable for comets which are unable to deal with adaptation. In practice, this is an

Towards a New Generation of Widgets for Supporting Software Plasticity 319

easy way for guarantying the global ergonomic consistency of the interactive
system. In this case, adaptation may be centralized in a dedicated agent (the tier-
component);

– Conversely, the internal non-concerted policy consists in achieving adaptation in a
fully autonomous way. Everything is performed inside the comet, without
cooperating with the rest of the interactive system. The open issue is how to
maintain the global ergonomic consistency of the interactive system;

– Intermediary policies, said concerted policies, depend on an agreement between
the comet and tier-components. An optimistic version consists in applying the
decision before it is validated by peers, whilst in a pessimistic version the comet
waits for an authorization before applying its decision. The optimistic version is
less time consuming but requires an undo procedure to cancel a finally rejected
decision.

In practice, the policy decision will be chosen against criteria such as performance
(c.f. the efficiency characteristic, time behavior sub-characteristic in section 2.1). The
software architecture model Compact (COntext of use Mouldable PAC for plasticity)
has been designed to take into account such an issue.

Compact is a specialization of the PAC (Presentation Abstraction Control) [8]
model for plasticity. PAC is an agent-based software architecture model that identifies
three recurrent facets in any component of an interactive system: an abstraction, a
presentation and a control that assures the coherence and communication between the
abstraction and the presentation facets. According to the “separation of concerns”
principle promoted by software engineering, Compact splits up each facet of the PAC
model in two slices, thus isolating a logical part from physical implementations in
each facet (Fig. 12):
_ Abstraction: as with the functional core adaptor in Arch, the logical abstraction

acts as an API for the physical abstraction. It provides a framework for
implementing the mechanisms to switch between physical abstractions (i.e., the
functional core(s) of the comet; they may be multiple in case of polymorphism at
this level). It is in charge of maintaining the current state of the comet;

_ Presentation: in a symmetric way, as with the presentation component in Arch, the
logical presentation acts as an API for the physical presentation part. It provides a
framework for implementing the mechanisms to switch between presentations
(they are multiple in case of polymorphism at this level);

_ Control: the logical part of the control assumes its typical role of coherence and
communication between the logical abstraction and the logical presentation. The
physical part, called “Plastic” (Fig. 12), is responsible for (a) receiving and/or
sensing and/or transmitting the context of use whether the comet embeds or not
any sensors (i.e., the Sensing step of the Reference Framework), (b) receiving
and/or computing and/or transmitting the reaction to apply in case of changes of
context of use (i.e., the Computation step of the Reference Framework), and (c)
eventually performing the reaction (i.e., the Execution step of the Reference
Framework). The reaction may consist of switching between physical abstractions
and/or presentations. The computation is based on a set of pairs composed of
compatible physical abstractions and presentations. At any point in time, one or
many physical abstractions and/or presentations may be executed. Conversely,
logical parts are only instanciated once per comet.

320 G. Calvary et al.

As in PAC, an interactive system is a collection of Compact agents. Specific canals of
communication can be established between the plastic parts of the controls to
propagate information in a more efficient way and/or to control ergonomic
consistency in a more centralized way. Compact is currently under implementation as
discussed in the conclusion. The next section analyses the notion of comet with regard
to the state of the art.

P
C

A

Logical parts

Plastic part

: maintains the set of pairs composed of
compatible abstractions and presentations.
May contain the adaptation mechanisms

Physical parts Physical parts

: mechanisms for switching

Fig. 12. The Compact software architecture model, a version of the PAC model (Presentation,
Abstraction, Control) specifically mold for plasticity.

3.4 Comets and the State of the Art

Plasticity is a recent property that has mostly been addressed at the granularity of
interactive systems. The widget level has rarely been considered. We note that most
of these works focus on the software architecture modeling. Based on the
identification of two levels of abstraction (AIOs and CIOs) [33], they propose
conceptual and implementational frameworks for supporting adaptation [22] [20]
[10]. But adaptation is limited to the presentation level [20] [10]. They do not cover
adaptations ranging from the dialog controller to the functional core.

We now have to go further in the implementation. We keep in mind the issue of
legacy systems [20] and the need for integrating multimodality as a means for
adaptation [10].

4 Conclusion and Perspectives

Based on a set of recent advances in plasticity, this paper introduces a new generation
of widgets: the notion of comets. A comet is an interactor mold for adaptation: it can
self-adapt to some context of use, or be adapted by a tier-component, or be
dynamically discarded (versus recruited) when it is unable (versus able) to cover the
current context of use. To do so, a comet publishes the quality in use it guarantees, the
user tasks and domain concepts it is able to support, as well as the extent to which it
supports adaptation. The reasoning relies on a scientific hypothesis which is as yet

Towards a New Generation of Widgets for Supporting Software Plasticity 321

unvalidated: the fact that adaptation makes sense at the widget level. The idea is to
promote task-driven toolkits where widgets that support the same tasks and concepts
are aggregated into a unique polymorphic comet. Such a toolkit, called “Plasturgy
studio” is currently under implementation. For the moment, it focuses on the basic
graphical tasks: specification (free specification through text fields, specification by
selection of one or many elements such as radio buttons, lists, spinners, sliders, check
boxes, menus, combo boxes), activation (button, menu, list) and navigation (button,
link, scroll). This first toolkit will provide feedback about both the hypothesis and the
appropriate granularity for widgets. If successful, the toolkit will be extended to take
into account multimodality as a means for adaptation.

Acknowledgment

This work is being supported by the European commission funded CAMELEON
R&D project IST-2000-30104. The authors would like particularly to thank Jean
Vanderdonckt and Quentin Limbourg, members of the project. Many thanks to Julie
Dugdale for checking the paper.

References

1. Abowd, G.D., Coutaz, J., Nigay, L.: Structuring the Space of Interactive System
Properties, Engineering for Human-Computer Interaction, Larson J. & Unger C. (eds),
Elsevier Science Publishers B.V. (North-Holland), IFIP (1992) 113-126

2. Allen, J.: Maintaining Knowledge about Temporal Intervals, Journal Communication of
the ACM 26(11), November (1983). 832-843

3. Arch: “A Metamodel for the Runtime Architecture of An Interactive System”, The
UIMS Developers Workshop, SIGCHI Bulletin, 24(1), ACM Press (1992)

4. Ayatsuka, Y., Matsushita, N. Rekimoto, J.: Hyperpalette: a hybrid Computing
Environment for Small Computing Devices. In: CHI2000 Extended Abstracts, ACM
Publ. (2000) 53–53

5. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the
Development of Plastic User Interfaces, Proceedings of 8th IFIP International
Conference on Engineering for Human-Computer Interaction EHCI’2001 (Toronto, 11-
13 May 2001), R. Little and L. Nigay (eds.), Lecture Notes in Computer Science, Vol.
2254, Springer-Verlag, Berlin (2001) 173-192

6. Calvary, G., Coutaz, J., Thevenin, D.: Supporting Context Changes for Plastic User
Interfaces : a Process and a Mechanism, in “People and Computers XV – Interaction
without Frontiers”, Joint Proceedings of AFIHM-BCS Conference on Human-
Computer Interaction IHM-HCI’2001 (Lille, 10-14 September 2001), A. Blandford, J.
Vanderdonckt, and Ph. Gray (eds.), Vol. I, Springer-Verlag, London (2001) 349-363

7. Calvary, G., Coutaz, J., Thevenin, D., Bouillon, L., Florins, M., Limbourg, Q.,
Souchon, N., Vanderdonckt, J., Marucci, L., Paternò, F., Santoro, C.: The CAMELEON
Reference Framework, Deliverable D1.1, September 3th (2002)

8. Coutaz, J.: PAC, an Object Oriented Model for Dialog Design, In Interact’87, (1987)
431-436

322 G. Calvary et al.

9. Coutaz, J. Lachenal, C., Barralon, N., Rey, G.: Initial Design of Interaction Techniques
Using Multiple Interaction Surfaces, Deliverable D18 of the European GLOSS (Global
Smart Spaces) project, 27/10/2003

10. Crease, M., Gray, P.D. & Brewster, S.A.: A Toolkit of Mechanism and Context
Independent Widgets. In procs of the Design, Specification, and Verification of
Interactive Systems workshop, DSVIS’00, (2000) 121-133

11. De Palma, N., Bellisard, L., Riveill, M. : Dynamic Reconfiguration of Agent-Based
Applications . Third European Research Seminar on Advances in Distributed Systems
(ERSADS'99), Madeira Island (Portugal), (1999)

12. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness, Proceedings of the CHI 2000 Workshop on The What, Who, Where, When,
and How of Context-Awareness, The Hague, Netherlands, April 1-6, (2000)

13. Florins, M., Vanderdonckt, J.: Graceful degradation of User Interfaces as a Design
Method for Multiplatform Systems, In IUI’94, 2004 International Conference on
Intelligent User Interfaces, Funchal, Madeira, Portugal, January 13-16, (2004) 140-147

14. Garlan, D., Schmerl, B., Chang, J.: Using Gauges for Architectural-Based Monitoring
and Adaptation. Working Conf. on Complex and Dynamic Systems Architecture,
Australia, Dec. (2001)

15. Grolaux, D., Van Roy, P., Vanderdonckt, J.: QTk: An Integrated Model-Based
Approach to Designing Executable User Interfaces, in PreProc. of 8th Int. Workshop on
Design, Specification, Verification of Interactive Systems DSV-IS’2001 (Glasgow,
June 13-15, 2001), Ch. Johnson (ed.), GIST Tech. Report G-2001-1, Dept. of Comp.
Sci., Univ. of Glasgow, Scotland, (2001) 77-91. Accessible at http://
www.dcs.gla.ac.uk/~johnson/papers/dsvis_2001/grolaux

16. Hinckleyss, K.: Distributed and Local Sensing Techniques for Face-to-Face
Collaboration, In ICMI'03, Fifth International Conference on Multimodal Interfaces,
Vancouver, British Columbia, Canada, November 5-7, (2003) 81-84

17. IFIP BOOK: Design Principles for Interactive Software, Gram C. and Cockton G. (eds),
Chapman & Hall, (1996)

18. ISO/IEC CD 25000.2 Software and Systems Engineering – Software product quality
requirements and evaluation (SquaRE) – Guide to SquaRE, 2003-01-13 (2003)

19. ISO/IEC 25021 Software and System Engineering – Software Product Quality
Requirements and Evaluation (SquaRE) – Measurement, 2003-02-03

20. Jabarin, B., Graham, T.C.N.: Architectures for Widget-Level Plasticity, in Proceedings
of DSV-IS (2003) 124-138

21. Marangozova, V., Boyer, F.: Using reflective features to support mobile users.
Workshop on Reflection and meta-level architectures, Nice, Juin, (2002)

22. Markopulos, P.: A compositional model for the formal specification of user interface
software. Submitted for the degree of Doctor of Philosophy, March (1997)

23. Myers, B., Hudson, S., Pausch, R.: Past, Present, Future of User Interface Tools.
Transactions on Computer-Human Interaction, ACM, 7(1), March (2000), 3–28

24. Oreizy, P., Tay lor, R., et al.: An Architecture-Based Approach to Self-Adaptive
Software. In IEEE Intelligent Systems, May-June, (1999) 54-62

25. Pinheiro da Silva, P.: User Interface Declarative Models and Development
Environments: A Survey, in Proc. of 7th Int. Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’2000 (Limerick, June 5-6, 2000), F.
Paternò & Ph. Palanque (éds.), Lecture Notes in Comp. Sci., Vol. 1946, Springer-
Verlag, Berlin, (2000) 207-226

26. Rauterberg, M. et al.: BUILT-IT: A Planning Tool for Consruction and Design. In Proc.
Of the ACM Conf. In Human Factors in Computing Systems (CHI98) Conference
Companion, (1998) 177-178

27. Rekimoto, J.: Pick and Drop: A Direct Manipulation Technique for Multiple Computer
Environments. In Proc. of UIST97, ACM Press, (1997) 31-39

Towards a New Generation of Widgets for Supporting Software Plasticity 323

28. Salber, D., Abowd, Gregory D.: The Design and Use of a Generic Context Server, In
the Proceedings of the Perceptual User Interfaces Workshop (PUI '98), San Francisco,
CA, November 5-6, (1998) 63-66

29. Seffah, A., Kececi, N., Donyaee, M.: QUIM: A Framework for Quantifying Usability
Metrics in Software Quality Models, APAQS Second Asia-Pacific Conference on
Quality Software, December, Hong-Kong (2001) 10-11

30. Streitz, N. et al.: I-LAND: An interactive landscape for creativity and innovation. In
Proc. of the ACM Conf. On Human Factors in Computing Systems (CHI99),
Pittsburgh, May 15-20, (1999) 120-127

31. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research
Agenda. In: Proc. Interact99, Edinburgh, A. Sasse & C. Johnson Eds, IFIP IOS Press
Publ., (1999) 110–117

32. Van Welie, M., van der Veer, G.C., Eliëns, A.: Usability Properties in Dialog Models:
In: 6th International Eurographics Workshop on Design Specification and Verification
of Interactive Systems DSV-IS99, Braga, Portugal, 2-4 June (1999) 238-253

33. Vanderdonckt, J., Bodart, F.: Encapsulating knowledge for intelligent automatic
interaction objects selection, In Ashlund, S., Mullet, K., Henderson, A., Hollnagel, E.,
White, T. (Eds), Proceedings of the ACM Conference on Human Factors in Computing
Systems InterCHI’93, Amsterdam, ACM Press, New-York, 24-29 April, (1993) 424-
429

Discussion

[Tom Ormerod] How much of the value of comet actually comes from the metaphor
used at the interface ?

[Gaëlle Calvary] The notion of comet is primary driven by the user task. In
PlasticClock, when the screen size is enlarged, the date becomes observable
because this task has been recognized as relevant for the user. It has been
modeled in the task model. Conversely, if space is tight, then interaction is
strictly reduced to the main tasks. So, the notion of comet is primary driven
by functional aspects. Non functional properties are considered for selecting
the most appropriate form. We will, for example, favor such or such
metaphor. The problem is when no solution fits both functional and non
functional requirements. Trade-offs are unavoidable. They are driven by
strategies. This balance between functional and non functional properties is
an interesting issue.

[Tom Ormerod] So, metaphor does not drive the design of the comet - the
specification of tasks determines the appropriate metaphor.

[Gaëlle Calvary] Yes. Of course, if the metaphor conveys an implicit task,
then the task can be made explicit in a dedicated comet and the metaphor
registered as possible presentation.

[Philippe Palanque] In the example of the plastic clock some tasks are not available
anymore in the bigger clock such as provide the user with the precise time in Paris
including minutes and seconds. Does Comet provide some help for checking such
constraints ?

324 G. Calvary et al.

[Gaëlle Calvary] First point, PlasticClock is just a demonstrator of plasticity.
It has not been implemented as a collection of comets. Then, in practice, a
comet is created if it is promising in terms of reusability. So, it is finely
analyzed from a user-centered perspective in terms of accuracy, etc. Its
adaptation rules are discussed with final users. Then, at run time, tradeoffs
are performed to achieve an optimum. It can be global to the interactive
system, or local to a comet. As a result, mismatches may appear between
local and global interests. Strategies have to deal with such issues. So, in
summary, a comet is designed in a local consistent way. But, when involved
in an interactive system, adaptation must be solved in a global way.

[Jurjen Ziegler] Did you address some high-level adaptation strategies such as
substituting agents by others in the run-time architecture ?

[Gaëlle Calvary] Yes. We have elicited a functional decomposition of the
runtime infrastructure that includes a component retriever and a configurator.
The retriever is in charge of finding a component (or agent) in a repository
that is then deployed by the configurator. Adaptation may be done at several
levels of abstraction. Components may be retrieved at different levels of
abstraction. Producing tools may be required to reify components that are not
executable. Yet, adaptation is specified by rules. We are studying the
appropriateness of Bayesian networks.

[Bonnie John] (to both Gaëlle and Simon Dobson) You are both offering different
ways to think about the problem of contextual-aware systems. How do you evaluate
whether your approach is a promising way to go forward ?

[Gaëlle Calvary] Our approach is strongly coupled with software
engineering. The validation lies in the cost/benefit ratio. Does a library of
comets improve the productivity of engineers and/or the quality of service of
the interactive system? We have to go further in the implementation to
answer the question.
[Simon Dobson] We have nothing to say about what adaptations are made.
What we deal with are the situations in which adaptations should occur, and
we can inform whatever mechanism is used to actually perform the
adaptation. In terms of evaluation, our work should be evaluated as an aid to
expression for designers and programmers: does it simplify the way in which
adaptation occurs, does it improve analysis and the ability to develop correct
systems. "Correct" remains an external notion depending on the application
being considered.

[Grigori Evreinov] For efficient adaptation and visualization of spatial events and/or
widgets the right metaphor is very important. To validate the metaphor itself it could
be interesting to apply the proposed approach for adapting temporal events, objects
and widgets, that is, under time-pressure condition a spatial arrangement could be
present more effectively.

[Gaëlle Calvary] Yes, we have to investigate time. Bayesian networks could
be an option.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 325-345, 2005.
 IFIP International Federation for Information Processing 2005

Using Interaction Style to Match the Ubiquitous User
Interface to the Device-to-Hand

Stephen W. Gilroy and Michael D. Harrison1

Dependability Interdisciplinary Research Collaboration,
Department of Computer Science, University of York, York YO10 5DD, UK.

steveg@cs.york.ac.uk

Abstract. Ubiquitous computing requires a multitude of devices to have access
to the same services. Abstract specifications of user interfaces are designed to
separate the definition of a user interface from that of the underlying service.
This paper proposes the incorporation of interaction style into this type of
specification. By selecting an appropriate interaction style, an interface can be
better matched to the device being used. Specifications that are based upon
three different styles have been developed, together with a prototype Style-
Based Interaction System (SIS) that utilises these specifications to provide
concrete user interfaces for a device. An example weather query service is
described, including specifications of user interfaces for this service that use the
three different styles as well as example concrete user interfaces that SIS can
produce.

1. Introduction

The increasing availability of personalized and ubiquitous technologies leads to the
possibility that whatever the device-to-hand is, it becomes the way to access services
and systems. Therefore, interfaces to services must be designed for a variety of
different types of device from desktop systems to handheld or otherwise portable
devices. Different styles of interaction often suit different devices most effectively.
While the appearance of ubiquitous devices has brought forth a proliferation of
innovative interactive techniques, the broad categories and aspects of style as, for
example, identified by Newman and Lamming [1] can still be applied. While a key-
modal interface may be appropriate for a mobile telephone, with its limited screen and
restricted keypad, a direct manipulation (DM) interface may be appropriate for a
device based around touch / pen interactive techniques, such as current models of
palmtop or tablet PCs. Typically in such situations a different low-level interface will
have to be designed separately for each device. It is possible that several interaction
styles may have to be supported for different users or parts of the system on the same
device. As new technologies evolve to meet the demands of ubiquitous computing
additional styles will emerge.

1Mailing address: Informatics Research Institute, University of Newcastle upon Tyne, NE1

7RU, UK. michael.harrison@ncl.ac.uk

326 S.W. Gilroy and M.D. Harrison

Style-specific design considerations normally take the form of guidelines,
heuristics or ad-hoc rationalizations by designers [2]. Designs to support many
devices may be facilitated by incorporating interaction style explicitly into an
implementation. In this paper we demonstrate that incorporating style-level
descriptions into a model of a user interface can give more flexibility than forcing a
single user interface model on a heterogeneous selection of devices. This paper is
concerned with an approach in which interaction with a service is bound to the
features of the platform through a mediating style description. The aim is to support
an interface that is appropriate given the technological constraints or opportunities
afforded by the platform. In section 2 the approach to the style-based interaction
system is contrasted with other approaches to platform independent service provision.
In section 3 the interaction style approach is described in more detail. In section 4 an
implementation of a style-based system and the specifications that drive it are
described. In section 5 an example of a weather system is used to illustrate the idea. In
section 6 the approach is discussed again in relation to other similar approaches and in
section 7 the paper draws conclusions.

2. Modelling the Ubiquitous User Interface

Separating the user interface from application functionality [3] is a key theme in the
delivery of interactive applications to multiple platforms. This is achieved by
abstracting the interaction with a user interface from its presentation on a specific
device. Model-based user interface development [4] provides useful tools to cleanly
separate the parts of an application. However, its potential for easing cross-platform
user interface development is less apparent when platforms differ in their support for
styles.

The rise of ubiquitous computing and the proliferation of user appliances of widely
differing capabilities and limitations have given new impetus to the need for cross-
platform interface design. A provider of ubiquitous services typically wishes to target
different users who may use devices of different capabilities, or a user or set of users
who wish to migrate their use of services across several different devices.

Separation of application functionality and delivery via abstractly defined
interfaces can be addressed in this broader context by the use of service frameworks
[5] that organize and aggregate software functionality and data, and facilitate
universal access to it. Universal user interfaces will provide interaction with services
on a variety of devices, tailoring the interface to suit the device.

2.1 Service Frameworks

A service framework enables application functions to be delivered to devices
whatever and wherever the devices are. The Web is an example of a framework for
the delivery of many similar services through Hyper-Text Markup Language (HTML)
files provided by web servers. Web services are delivered via Universal Resource
Locators (URLs) that identify a particular service (usually requesting a single page of
information). A user therefore makes the required service explicit by entering a URL

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 327

into the browser manually, through a bookmark, or via a hyperlink. Other
frameworks, e.g., XWeb [6], use similar approaches to existing web services and
provide better support for diverse interaction.

2.2 Universal Interface Specification

An application's behaviour can be defined independently of platform, through the use
of services. However, a mechanism is required to map that behavior to the specific
interface components of a device. Model-based approaches map abstractions of
interaction objects onto platform-specific implementations. The interactive
components of the interface, for example a text box for inputting text or a drop-down
list for making a choice, are abstracted and encapsulated in terms of a relatively small
set of “interactors” [7]. Other approaches utilize several levels of abstraction that
may include low-level “widgets”, as well as more abstract components such as
“group” or “choice”. The sets of widgets available on different platforms may not
intersect in terms of detail but as long as the abstraction can be fulfilled by a widget
that is available on a particular platform then a concrete interface can be rendered.

2.3 Problems of Abstract User Interface Models

Abstract interface models [6, 8-12] are problematic when abstraction is such that there
is no convenient implementation of the low-level interaction objects on a particular
platform. A model must be defined to either restrict the set of objects to ones that are
common across all platforms, or provide a wider set of objects to cover the variation
in platform. In the former case, the interface becomes the “lowest common
denominator” of all target platform capabilities, and is unsuitable if a new platform
has interaction objects that do not exist in the available set. In the latter case, abstract
objects are a union of available platforms. This gives rise to the two-fold problem of
an ever-expanding library, or “toolkit”, of widgets and an overly complicated
mapping scheme to select the correct widgets for a platform.

Presenting a user interface for a UIML [11,12] specification on a specific platform
involves more than selecting an appropriate widget representation. An interface
structure that is defined canonically may fit one platform but not another. It is then
necessary to have different specifications for cross platform structure variations, or
alternatively a generic structure specification, which may be overridden when
mapping the parts of the interface to actual platform elements. This defeats some of
the point of a single structure definition. UIML also assumes a one-to-one mapping
of parts to toolkit implementations. If a part in one interface implementation is
needed it is added to the canonical definition of parts, even if it is not mapped to a
particular platform.

XWeb [6], on the other hand, provides a higher-level formal specification of
semantic interaction than a simple widget mapping. However, it still suffers from the
“structure” problems of UIML in that it uses “grouping” interactors that arrange other
interactors in a hierarchical structure, incorporating a canonical XView. An XView
defines which elements of a data tree are manipulated by each interactor. While
XWeb allows designers to reuse a view specification across clients with no extra

328 S.W. Gilroy and M.D. Harrison

effort, designs have to combine the interactors into views that are suitable for all
platforms. The designer can therefore either design one set of views that maps to all
client devices, or create a different set of views for different client types, losing the
advantage of a single specification. Even if this is done, a new client with new
interactor implementations might have usability problems with existing views, a
problem encountered when speech widgets were implemented in an XWeb client [6].

3. A Model of Interaction Style

A model that incorporates interaction style makes it possible to vary the structure or
interface semantics applied across devices. User interface descriptions are defined on
a per-style basis and a target device selects the description that best maps onto its
capabilities. Hence, if a form-fill interaction style is most appropriate for the device in
the context of a particular application then that style is bound to the application and
mapped to the interactive components of the device. For another target device a
dialogue style might be more appropriate and in this case, the same application
software would be bound with this different style.

The number of styles supported in the model should be finite and small, to allow a
designer to target the maximum number of devices with the minimum amount of
effort. It should also be possible to add a completely new style by creating additional
definitions for existing interfaces. Although a designer does not have to support all
styles, compatibility will be lost if devices do not support the styles chosen.

Two distinguishing features of a style are the manner in which they guide the user
to the desired task or function and how they gather required input from the user.
There may be semantic relationships that are shared across styles but which manifest
themselves in different ways.

The style-based interaction system described in section 4 incorporates support for
three styles: form-fill, dialogue and menu. Although these three are considered
“classic” styles that can be applied to desktop systems, they also apply equally to
other kinds of device. The services provided may be targeted at both desktop and
mobile devices. Form-fill would map onto a web-style interface on desktop type
systems, dialogue for voice-based telephone systems and menu for mobile phones or
embedded devices.

3.1 Form-Fill Style

Forms are two-dimensional rather than one-dimensional, so navigation is important.
The organization of a form on the display of the device requires a logical structure so
that it can be decomposed to suit different display capabilities [13].

Form elements have different interaction requirements. Simple elements just
require text entry while complex elements involve groups of choices or data of a
particular format and may be mandatory or optional. The relation between elements
might mean that two elements are mutually exclusive, or that filling in an element
makes other elements or form sections mandatory. In addition, the elements that are
filled in might affect what actions are available with the form data.

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 329

When the form is filled in, an action must be chosen to process the information.
This is usually done by special commands, or buttons. An action might specify a
certain set of form elements from which it processes information or the action
invoked by a command might depend on the value of certain form elements.
Validation of elements could occur before processing or feedback given if the
processing finds invalid information.

A typical example of a form-fill style is the web-based form illustrated in figure
1(a).

Fig. 1(a). A Web-based Form Interface.

3.2 Dialogue Style

The key feature of this style is the structure of the dialogue with the user. As
questions are posed, the user's answer determines the next question asked and that
answer may be a piece of data that is gathered. A state-chart notation is useful in
describing this interface. Each state is a mode of the interface, and the transitions
between states are the available choices. On entering a state the appropriate prompt is
displayed. Input and output in a question/answer interface is one-dimensional so,
while it is limited in terms of interaction, it can be supported by devices without
complex graphical capabilities and the conversational nature of interaction facilitates
the use of speech. VoiceXML systems (figure 1(b)) are an example of a dialogue style
of interface.

330 S.W. Gilroy and M.D. Harrison

Fig. 1(b) A Voice XML Dialogue Interface.

3.3 Menu Style

The navigational structure of a menu style is governed by how best to partition the
menu space to provide meaning to guide the user. Breadth is preferred over depth, as
deep menus have the same orientation problems as dialogue structures. Devices that
employ menu interfaces have a limited, customised input mechanism based around a
small number of specialized buttons or keys. Input and navigation must be designed
to facilitate easy mapping from an unknown layout of keys. Current generation
mobile phones typically utilize a menu interface as shown in figure 1(c).

Fig. 1(c) A Mobile Phone Menu Interface.

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 331

4. Style-Base Interaction System (SIS) Framework

A prototype application framework supports interfaces using a variety of styles as
outlined in section 3. The components of the framework are shown in figure 2. The
framework consists of a runtime system that is configured by a set of eXtensible
Mark-up Language (XML) specifications describing the service and style-based user
interfaces of an application.

Fig. 2. SIS Framework.

SIS consists of both components that reside on a client appliance and those that can
be managed on a remote server. Within a running ubiquitous application, this
distinction is transparent. SIS is designed to switch easily between different style
instantiations running on a single service instantiation. A user may thus migrate
between different appliances without losing saved task-level information. It is feasible
to swap a running style between different instances of the same service or two
different services that both support the set of tasks required by the style definition.

The three components that deal with the initialization and management of an
application are the Service Browser on the client, a Style Manager to look after styles
and a Task Manager to look after the tasks required by services. Managers exist as
separately running entities, possibly residing on remote servers, with their own
resources and are configured using XML specifications of task and style. They use
this configuration to generate the run-time components of the interface: Service
Instances and an Abstract Interface for each style. Device specific Presentation Units
provide concrete interface instantiations on each client. A weather service application
is used to illustrate the approach.

Task
Manager

Style
Manager

Service
Instance

Abstract
Interface

Presentatio
n Unit

Service
Browser

Client

Server

332 S.W. Gilroy and M.D. Harrison

4.1 Task Definition Using Service Specifications

The XML specification of a service defines its tasks, required function and data
storage. A task manager generates run-time instantiations of services called service
instances from these specifications. A service instance provides the data storage for
its component tasks and a list of all the tasks in the service. Task instantiations are
shared between services that use them, and are maintained by the task manager.
When a service instance needs a task, it calls the task using the manager that created
it. Tasks are identified by a namespace scheme2 to avoid clashes between tasks of the
same name utilized by different services.

Functions. Service functions implement the tasks that are part of a service and
“wrap” the logic implementation so that there is a consistent interface for use in SIS.
SIS also allows external functions (utility functions) to manipulate data before it is
used in a function call. An example service and utility function specification are
shown in figure 3. The class and method attributes identify a function's Java
implementation. The <return> and <parameter> elements identify the
function's return type and required parameters respectively. Utility functions do not
affect the state of the underlying application logic, but are assumed to perform some
repeatable translation upon data. SIS therefore does not need to know the
implementation of data types to be able to manipulate them.

Fig. 3. Function Definitions: A Service Specification XML Fragment.

Tasks. A single task within a service represents the lowest level of interaction with an
application that is understandable to the user. Tasks describe a flat pool of possible
functions and define how they are invoked. Task parameters can be provided either by
user input or by a stored value. In the case where a needed parameter is a stored value
that is not initialized, that task can be defined as unavailable.

Each task can call on at most one service function to guarantee atomicity of tasks
and avoid problems of sub-task ordering. The provision of utility functions is meant
to encourage data representation issues to be separated from logic. Hence, logically

2 A namespace is a unique identifier that labels a group of related items. Different groups can

then use the same identifiers internally to label different items.

<function class=”WeatherService” method=”getWeather”
name="GetWeather">
 <return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>

<utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
</utility>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 333

similar tasks may use the same underlying service function and use utility functions to
manipulate the data they provide to that function.

An example task specification fragment is shown in figure 4. Note the definition of
the mapping of input from the user (<variable> elements) to parameters of the
service function (<parameter> elements). This mapping technique is described
below.

Fig. 4. Task Definition: A Service Specification XML Fragment.

Mapping Tasks onto Functions. The data passed from tasks to their underlying
function are defined in terms of input variables and function parameters. These are
represented in task definitions by <variable> and <parameter> element tags.
The types of parameters defined in the task exactly match the input parameters of the
underlying service function. However, there need not be the same number of task
parameters as variables. The manipulation of a variable to provide a parameter value
is defined with the <parameter> element tag. It identifies the variable to be used,
what mapping to perform and whether to store the generated parameter value for later
use.

The default mapping, if no mapping is explicitly defined (as in figure 4), is no
manipulation at all. Data is output as a parameter exactly as it is received as a
variable.

Fig. 5. Utility Mapping in a Task Parameter: A Service Specification XML Fragment.

A utility mapping (see figure 5) assigns a utility function to transform the data of a
variable that defines a mapping from postcodes to city names. The name attribute
identifies the utility function to use, and the nested <parameter> element tags
describe the mapping for the utility function's parameters.

Extract mappings take an element of a record type and return one of the items
within the record as specified in the parameter. (Figure 6 shows extraction of an ID
value from an account record.)

<task name="Get City Weather" taskFunction="Get Weather">
 <variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>

<parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha"
 source="task">postalCode</parameter>
</parameter>

334 S.W. Gilroy and M.D. Harrison

Fig. 6. Extract Mapping in a Task Parameter: A Service Specification XML Fragment.

Keeping Track of State. A task-based service keeps track of persistent state at a task
level separately from any provision made by underlying logic. State therefore can be
shared between tasks directly without the underlying logic. It is possible to support
stateless implementations of the logic (such as with raw HyperText Transfer Protocol
(HTTP) based systems). A task parameter can define a mapping from a state variable
instead of a task variable. In figure 7, a state variable keeps track of the name of a city
for which weather is requested and a task uses the name to give an update of that
request.

Fig. 7. State Definition and Use in a Task Parameter: A Service Specification XML Fragment.

4.2 Interaction Style Specification

The key feature of the SIS approach is how tasks are implemented on different
platforms. Each platform supports a set of presentation objects. Between the tasks and
the presentation, each presentation style supports its own abstract user interface
elements that gather input and display output to the user. These elements have their
own distinctive way of navigating available tasks. No explicit layout or presentational
information is contained in a style description; rather it is the semantic relationship
between interface components that is described. It is the job of the presentation unit to
resolve these relationships into an appropriate presentation.

Style instances are generated in the SIS client in order to facilitate fast user
response. Therefore, events generated by presentation implementations are dealt with
by style-specific, presentation-independent, objects that reside locally. The style
manager generates each style instance from scratch locally on each client in order to
customize a client's access to a common service.

Three styles are currently implemented but aim to provide a foundation for a
potentially larger set.

<parameter type="alpha"
 source="task"
 mapping="extract">account
accID</parameter>

<state> <variable type="string">lastCity</variable> </state>
...
<task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha" source="store">lastCity</parameter>
</task>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 335

4.2.1. Form-Fill Style
The style definition for a forms-based style involves: field elements for gathering user
input, actions that can be invoked and a mapping from actions and fields to
underlying tasks.

A field element is an abstract interactor that allows the user to enter a value to be
used in a task, for example text entry, password entry, single choice, multiple choice,
date entry, range entry and currency entry. Questions about whether a single choice
entry would be represented by a drop-down list, radio buttons or some other selection
method are deferred to platform implementation and depend on the actual data being
selected and the layout constraints of the presentation. An example of a simple text
field element and a single choice element are given in figure 8. The definition gives
the type of the field element and the type of its value.

Fig. 8. Form-fill Style Specification: Example text field and single choice field element
definitions.

Each style provides mechanisms for processing the data to produce an appropriate
representation. Providers of services may specify functions that perform
representational transformations. For example, in the form-fill style an output
processor defines a set of items that can be extracted from a data type (see figure 9).
Several output processors can be defined to work on the same types and used for
different purposes.

Fig. 9. Form-fill Style Specification: An example output definition.

A form is built out of fragments that map a set of fields to the inputs of a particular
task. A fragment's task is only invoked if the requirements of the fields of that
fragment are satisfied. A fragment also specifies an output processor that can extract
information from the output of the task.

<field name="postalText" type="text"/>

<field name="accountChoice" type="choice" value="AccountType">
 <n-selection>1</n-selection>
 <selection-values source="utility">Get Accounts</selection-
values>
</field>

<processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
</processor>

336 S.W. Gilroy and M.D. Harrison

Fig. 10. Form-fill Style Specification: An example form fragment definition.

This definition (figure 10) outlines a hierarchy of actions that may be invoked by a
user and associates with each action a set of form fragments that are evaluated when
that action is invoked. Typically an action would be invoked by the user pressing a
submit button to indicate completion of the form ready for processing. An action is a
semantic unit within the form. Trees of actions, together with form fragments allow a
presentation to compose a form representation. The presentation decides whether
fields are presented on several “pages” or on a single “page” and use different buttons
to invoke different actions.

4.2.2. Dialogue Style
Dialogue style definitions are described by a set of grammars of input token
combinations. Dialogue structures make use of these grammars to move between
elements of the dialogue. A grammar used in a transition between states is called a
match set and contains a list of match items that can be matched by a series of tokens
in input. For example in figure 12 <matchitem> contains a main <token> whose
contents must match the next input token and optionally a list of match items that can
be matched after that token. Items are evaluated in list order. As soon as an item
matches, no more items in a list are evaluated. An item only matches if its main token
matches and one of its sub items matches. That a possibility is optional is supported
by a special <lambda> match item that is matched if no other items in a list are
matched.

Fig. 11. Dialogue Style Specification: An example match set definition fragment.

The dialogue structure is a tree of states that has special task-invoking states as the
leaf nodes in the tree (see figure 12). States are defined with <dialogue-state>
element tags and contain possibly conditional prompts that are displayed if the
dialogue stops at that state. A transition attribute identifies match sets or stored
variables that a user's input must match. After a task is invoked, the dialog restarts at
the root of the tree.

<form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input req="mandatory">cityText</input>
 <output type="text">weatherOut</output>
</form_fragment>

<matchset name="CityMatch">
 <matchitem>
 <token>city</token>
 <matchitem>
 <token>name</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 337

Fig. 12. Dialogue Style Specification: An example dialogue tree definition fragment.

Task invocations are defined in special states that define the underlying task to be
invoked, which dialogue variables to use, and the response to be generated with the
output (figure 13).

Fig. 13. Dialogue Style Specification: An example task state definition fragment.

Prompts can be either predefined questions or the response from a task invocation.
Responses can also be shared between task instances. User variable input is
transferred to the task states by use of a set of defined variables. The name of these
variables can be used in place of a grammar match set in a transition between states.

4.2.3. Menu Style
A menu-based interface is specified by a tree of menu items (see figure 14). Each
node representing an item has a label and an optional description of a task invocation.
Only the leaves of the tree can have task invocations. Details of the task are wrapped
into the menu item specification, with the name of the task and an output data
extraction defined as usual, together with a list of inputs. Inputs can have a label to be
displayed to the user when entering that input.

<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 <dialogue-state transition="CityMatch">
 <prompt source="CityInput"/>
 <dialogue-state transition="$CITYVAR">
 <prompt source="CityWeather"/>
 </dialogue-state>
 </dialogue-state>
...
</dialogue-state>

<response name="weatherResponse" class="WeatherData">
 <output type="text">
 <method>getWeatherText</method>
 </output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>

338 S.W. Gilroy and M.D. Harrison

Fig. 14. Menu Style Specification: An example menu item definition.

This current version is limited to descriptions of simple menus, but as an aim of the
specifications is to simplify interface definition for simple interfaces, the descriptions
are also simple. It is envisioned that the specification will be extended to cope with
more complicated menu semantics and user input.

4.3 Presentation

Presentation units run on the client device and prescribe a concrete user interface for
style definitions. Each style will have a presentation unit tailored for it that runs on a
particular device. A client presentation unit utilizes a reference to a remote service
instance and the appropriate style instance. They give access to the internal object
representations of tasks and the elements of styles. When a task is to be invoked, it
passes the appropriate data to the service instance.

Current implemented presentation units use simple techniques to deal with physical
layout and representational issues. An expansion of the presentation component in
the future might include dealing with details of physical layout in an abstract way.

5. Creating Interfaces with Styles

An example weather service together with definitions of the three different styles of
interfaces described above, and their rendering by presentation units is now described.
The service provides a single function that returns a textual description of the weather
for a given location supplied as a string.

5.1 The AnyWeather Service

The weather query service is described by a XML task specification for the service
shown in figure 15. Three separate tasks perform the service:

1. Request the weather for a city by name (“Get City Weather”)
2. Request the weather for a city by postcode (“Get Postal Weather”)
3. Refresh the last weather request (“Update Weather”)

Requesting the weather for a city by name utilizes the underlying service function
“Weather Service” directly, while a post-code based request requires the use of
an external utility function, “postalToCity”, to convert postcodes to city names.

<menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
</menu-item>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 339

The “Update Weather” task utilizes a state store object to keep track of the last
city for which weather was requested.

Fig. 15. AnyWeather task specification.

5.2 Form-Fill Interface

The specification of the form-fill style for the AnyWeather service is shown in figure
16. Two fields are defined, one to enter city names (“cityText”) and one to enter
postcodes (“postalText”). A processor (“weatherOut”) extracts the description
of the weather from a WeatherData output object. Three form fragments, for each
of the three tasks, use the defined processor for output and the two fields as inputs.
The <sub-form> definitions match the form fragments to an action and a single
display.

<service location="http://www-
users.cs.york.ac.uk/~steveg/weather/">
<function class="WeatherService" method="getWeather" name="Get
Weather">
<return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>
 <utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
 </utility>
 <state>
 <variable type="string">lastCity</variable>
 </state>
<task name="Get City Weather" taskFunction="Get Weather">
<variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>
<task name="Get Postal Weather" taskFunction="Get Weather">
<variable type="simple">postalCode</variable>
 <parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha" source="task">postalCode</parameter>
</parameter>
</task>
 <task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha"
source="store">lastCity</parameter>
 </task>
</service>

340 S.W. Gilroy and M.D. Harrison

Fig. 16. AnyWeather form-fill style specification.

Fig. 17. Weather Service form-fill interface.

The form-fill presentation unit renders the form components on a single screen

with two buttons representing the first sub-level of the action tree (see figure 17). The

<style type="form"
 location="http://www.users.cs.york.ac.uk/~steveg/weather">
 <field name="cityText" type="text" />
 <field name="postalText" type="text" />
 <processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
 </processor>
 <form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input requirement="mandatory">cityText</input>
 <output type="text">weatherOut</output>
 </form_fragment>
 …
 <form>
 <display type="text">weatherDisplay</display>
 <action-set>
 <action-set name="getWeather">
 <action name="getCity"/>
 <action name="getPostal"/>
 </action-set>
 <action name="updateWeather"/>
 </action-set>
 <sub-form>
 <fragment>cityForm</fragment>
 <action>getCity</action>
 <display>weatherDisplay</display
 </sub-form>
…
 </form>
</style>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 341

interface uses the requirements of the form fragments to evaluate which of the two
user input tasks to invoke when the “Get Weather” button is pressed. The interface is
told that “City Name” is mandatory for the “Get City Weather” task, but not required
for the “Get Postal Weather” task, so if a city name is entered it can assume that the
city task is required, and the button will invoke that task. In addition all non-required
fields of that task will be disabled to help indicate which task has been chosen

Fig. 18. AnyWeather dialogue style specification.

5.3 Dialogue Interface

The specification of the dialog style for the AnyWeather service is shown in figure
18. Prompts are defined for the initial dialog state and for requesting user input. A

<style type="dialogue">
<question name="GetWeatherPrompt">...</question>
<question name="GetUpdatePrompt">...</question>
<question name="CityInput">...</question>
<question name="PostInput">...</question>
<response name="weatherResponse" class="WeatherData">
 <output type="text"><method>getWeatherText</method></output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>
...
<matchset name="PostMatch">
 <matchitem>
 <token>postcode</token>
 </matchitem>
 <matchitem>
 <token>postal</token>
 <matchitem>
 <token>code</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>
...
<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 ...
 <dialogue-state transition="PostMatch">
 <prompt source="PostInput"/>
 <dialogue-state transition="$POSTVAR">
 <prompt source="PostWeather"/>
 </dialogue-state>
 </dialogue-state>
 ...
</dialogue-state>
</style>

342 S.W. Gilroy and M.D. Harrison

response extracts the weather description from a WeatherData object in much the
same way as for the form-fill style. A task state for each of the available tasks is
assigned a response and an appropriate variable. Three match set grammars let a user
enter a variety of phrases to select each of the tasks. For instance, a user can enter
“postcode”, “postal code” or just “postal” to access the Get Postal Weather
task. A dialogue with three paths leads to the three tasks. The paths to the user input
tasks have two states, one of which prompts the user to enter the appropriate input if it
is not already in the token string. The update task doesn't require user input so only
requires one state transition to reach it. The presentation unit for the dialogue renders
the interface shown in figure 19.

Fig. 19. Weather Service dialogue interface.

Fig. 20. AnyWeather menu style specification.

<style type="menu"
 location="http://www-users.cs.york.ac.uk/~steveg/weather">
 <menu>
 <title>Weather Service Menu</title>
 <menu-item>
 <label>Weather by City</label>
 <task>Get City Weather</task>
 <input type="string">
 <name>cityName</name>
 <label>Enter a city name</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Update Weather</label>
 <task>Update Weather</task>
 <output class="WeatherData"
method="getWeatherText"/>
 </menu-item>
 </menu>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 343

5.4 Menu Interface

The specification for the menu style of interface for AnyWeather is shown in figure
20. All three tasks are available from the main menu, one item per task. The two tasks
requiring user input have inputs fields rendered as separate entry screens in a menu
presentation implementation as shown in figure 21.

Fig. 21. Weather Service menu interface.

6. Discussion

The specifications in SIS separate the specification of the functionality of a ubiquitous
application from the specification of its interface and provide a selection of different
styles of interface so that an interface can more closely match the capabilities and
limitations of a device. Both achievements are consistent with the original
requirements of User Interface Management Systems (UIMS). Having a clean
separation of function and interface has particular advantages when providing a
selection of interface descriptions. It is clearly less important when providing a single
“canonical” interface as in the case of XWeb and UIML (as discussed in section 2.3)
or a UIMS vision based around a single type of device.

SIS achieves this separation by making the abstraction of functionality very simple.
Any semantic relationships between the tasks must occur at the style level. In the
AnyWeather service the relationship of tasks in the form-fill style (figure 16) is
different from the dialogue style (figure 18), and this would be the case however
systematically the layering was achieved.

Style specifications do not dictate how a presentation unit displays the information
conveyed in the style. Presentation units on different devices display a style in
different ways to fit that device even though the style definition is the same on each
device. Applications can therefore use native applications on devices by having a
presentation unit that renders interfaces in a way that is consistent with them. For
instance a presentation unit could choose to display the AnyWeather form-fill actions

344 S.W. Gilroy and M.D. Harrison

as three separate buttons, rather than two, or indeed display the three sub-forms on
different screens.

Although AnyWeather is designed to be simple to illustrate the basic ideas, more
features can be added to each of the different styles. A further application of these
features demonstrating SIS is based around an internet banking scenario. In this case
more complex data types need to be supported, and this requires development of a
richer type system. List and record types can be implemented to help support more
complex applications as well as user-defined custom types (similar to those in
XWeb).

The relative size of dialogue style definitions might be said to be in conflict with
the requirements for definitions for simple interfaces to be simple themselves.
However, the benefit of having a clear, extensible specification means that the parsing
engine of the system can be much simpler and allows for better integration with
simple tools. In future, size might be alleviated without affecting the parsing engine
by using transformations from more concise specifications into the current versions.

7. Conclusion

A model of interaction style has been devised that can be used to provide a range of
possible interfaces to be presented on a device. Basing a single interface specification
on simple (yet still abstract) concepts can work, but is limited if target devices are too
diverse in their interactive capabilities. Conversely, tying the specification too closely
to the capabilities of any one device leads to the situation of having a different
specification for each device. Having a finite set of styles specifications can be
complex enough to make fuller use of devices capabilities yet different and flexible
enough to work on a wide range of devices. Interaction styles have potential to be
viable for defining interfaces for ubiquitous interactive systems on many devices.
Additional applications will provide the impetus for expanding the features of SIS,
and demonstrate its potential and flexibility.

References

1. Newman, W., Lamming, M: Interactive System Design. Addison-Wesley (1995) 293—
322

2. Shneiderman, B: Designing the User Interface, 3rd edition. Addison Wesley Longman
(1998) 71-74

3. Edmonds, E.: The emergence of the separable user interface. In Edmonds, E., ed.: The
Separable User Interface. Academic Press (1992) 5-18

4. Vanderdonckt, J.: Current trends in computer-aided design of user interfaces. In
Vanderdonckt, J., ed.: Computer-Aided Design of User Interfaces Proc.of CADUI '96.
Namur University Press (1996) xiii-xix

5. Abowd, G., Schilit, B.N.: Ubiquitous computing: The impact on future interaction
paradigms and HCI research. In: CHI97 Extended Abstracts. (1997)

6. Olsen, D.R., Jefferies, S., Nielsen, S.T., Moyes, W., Fredrickson, P.: Cross-modal
interaction using XWeb. UIST 2000. (2000) 191-200

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 345

7. Myers, B.A.: A new model for handling input. ACM Transactions on Information Systems
(TOIS) 8 (1990) 289-320

8. Ponnekanti, S.R., et~al.: ICrafter: A service framework for ubiquitous computing
environments. In: Proceedings of Ubicomp 2001. LNCS 2201 (2001) 56-75

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to the
development of UIs for mobile computers. In: IUI01:2001 International Conference on
Intelligent User Interfaces. (2001) 69—76

10. Muller, A., Forbrig, P., Cap, C.H.: Model-based user interface design using markup
concepts. In: DSV-IS. Volume 2220 of Lecture Notes in Computer Science, Springer
(2001) 16-27

11. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language. PhD
thesis, Virginia Tech (2000)

12. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.: UIML: an appliance-
independent XML user interface language. In: Computer Networks. Volume 31. (1999)
1695-1708

13. Turau, V.: A framework for automatic generation of web-based data entry applications
based 0on XML. In: ACM Symposium on Applied Computing (SAC 2002). (2002)

Discussion

[Gerrit van Deer Veer] You did not mention/elaborate interaction styles “direct
manipulation” nor “command language”. DM requires complex representation of n-
dimensional interaction space and n-degrees of freedom user act to, command
language seem completely upprite(?). Also, in envisioning scenarios of companies
like Philips, NTT, Sun (“starfire”) these styles are mixed.

[Stephen Gilroy] We did not elaborate DM: it’s very complex. We
considered mixed styles (?). their analysis / Specification would be
separate/unconnected.

[Ann Blanford] Walk-up-and-use isn’t just device or just context – it’s a tuple of
device, context, user, task(s). i.e. There are combinations that work together and often
that don’t. Can these combinations make style selections simpler ?

[Stephen Gilroy] Yes.

[Kevin Schneider] Within your categorization of interaction styles, are there different
styles for each device ? For example, would there be a different interaction style for
filling in a form on a PC versus filling in a form on a PDA.

[Stephen Gilroy] No, it would be the same style. The device would handle
the different presentations.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 346-362, 2005.
 IFIP International Federation for Information Processing 2005

Supporting Flexible Development of Multi-device
Interfaces

Francesco Correani, Giulio Mori, Fabio Paternò

ISTI-CNR
56124 Pisa, Italy

{francesco.correani, giulio.mori, fabio.paterno}@isti.cnr.it
http://giove.isti.cnr.it

Abstract. Tools based on the use of multiple abstraction levels have shown to
be a useful solution for developing multi-device interfaces. To obtain general
solutions in this area it is important to provide flexible environments with
multiple entry points and support for redesigning existing interfaces for
different platforms. In general, a one-shot approach can be too limiting. This
paper shows how it is possible to support a flexible development cycle with
entry points at various abstraction levels and the ability to change the
underlying design at intermediate stages. It also shows how redesign from
desktop to mobile platforms can be obtained. Such features have recently been
implemented in a new version of the TERESA tool.

1 Introduction

Model-based approaches [10, 13] have long been considered for providing support to
user interface design and development. Recently, such approaches have received
further attention because of the challenges raised by multi-device environments [1, 4,
6, 13]. The use of tools based on logical abstractions enables adapting the interfaces
under development to the characteristics of the target devices. This can simplify the
work of designers who do not have to address a proliferation of devices and related
implementation details.

The potential logical descriptions to consider are well identified, and their
distinctions are clear [3]: task models represent the logical activities to perform in
order to reach users’ goals; object models describe the objects that should be
manipulated during task performance; abstract user interfaces provide a modality
independent description of the user interface in terms of main components and logical
interactors; concrete user interfaces provide a platform-dependent description
identifying the concrete interaction techniques adopted, and lastly the user interface
implements all the foregoing.

Various approaches have benefited from this logical framework, and tools
supporting it have started to appear. In particular, there are tools that implement a
forward engineering approach, which take an abstract description and generate more
refined ones until the implementation is obtained; or tools supporting reverse
engineering approaches, which instead take an implementation and aim to obtain a

Supporting Flexible Development of Multi-device Interfaces 347

corresponding logical description. Examples of forward engineering tools are Mobi-D
[13] and TERESA [6]. They both start with task models and are able to support user
interface generation, though by applying different rules and additional models.
TERESA is the tool for the design of multi-device interfaces developed in the EU IST
CAMELEON project. It introduces the additional possibility of adapting the
transformation process to the platform considered. A platform is a set of devices that
share a similar set of interaction resources. Another example of tool for forward
engineering is ARTstudio [4], which also starts with the task model and supports the
editing of abstract and concrete user interface, but, contrary to TERESA, it generates
Java code instead of Web pages and is not publicly available. Examples of different
support for reverse engineering are Vaquita [2] and WebRevEnge [8]. The first one
provides the possibility of rebuilding the concrete description of Web pages, whereas
the latter reconstructs the task model corresponding to the Web site considered. In
both cases one limitation is the lack of support for the reverse engineering of Web
sites implemented using dynamic pages.

The needs and background of software developers and designers can vary
considerably, and there is a need for more flexible tools able to support various
transformations in the logical framework mentioned. To this end, we have designed
and implemented a new version of the TERESA tool, aiming to provide new
possibilities with respect to the original version [6]. In particular, the new version that
is presented in this paper supports multiple entry points in the development process
and the redesign of a user interface for a different platform.

In the paper we first recall the basic design criteria of the original version of the
TERESA tool and then we dedicate one section to describing how multiple entry
points can be supported and one for the transformation for redesign from desktop to
mobile. We then show examples of applications of such new features and, lastly, we
draw some conclusions and indications for future work.

2 The Initial TERESA Environment

The TERESA tool was originally designed to support the development of multi-
device interfaces starting with the description of the corresponding task model. In
order to facilitate such a development process the main functionality of the CTTE tool
[7], supporting editing, analysis, and interactive simulation of task models, have been
integrated into the new tool. So, once designers have obtained a satisfying task model,
they can immediately change mode and use it to start the generation process. The tool
provides automatic transformation of the task model into an abstract user interface
structured into presentations. For each presentation, the tool identifies the associated
logical interactors [11] and provides declarative indications of how such interactors
should be composed. This is obtained through composition operators that have been
defined taking into account the type of communication effects that designers aim to
achieve when they create a presentation [8].

348 F. Correani, G. Mori, and F. Paternò

The composition operators identified are:
• Grouping (G): indicates a set of interface elements logically connected to
each other;
• Relation (R): highlights a one-to-many relation among some elements, one
element has some effects on a set of elements;
• Ordering (O): some kind of ordering among a set of elements can be
highlighted;
• Hierarchy (H): different levels of importance can be defined among a set of
elements.

In addition, navigation through the presentations is defined taking into account the
temporal relations specified among tasks. The abstract user interface description can
then be refined into a concrete user interface description, whereby a specific
implementation technique and a set of attributes are identified for each interactor and
composition operator, after which the user interface implementation can be generated.
Currently, the tool supports implementations in XHTML, XHTML mobile device,
and VoiceXML (one version for multimodal user interfaces in X+V and one version
for graphical direct manipulation interfaces are under development).

3 Support for Flexible Forward Engineering

Interface design is complex. Often, as designers go through the various steps in order
to develop suitable solutions for the current abstraction level, they would like to
reconsider some of the choices made earlier in an iterative process. Furthermore, the
actual results of automatic transformations may not be precisely those expected and
thus would need to be refined. Lastly, the need to provide relevant support to a
flexible methodology requires the ability to offer different entry points.

The original version of the TERESA tool provided a concrete solution to the issue

of supporting development of multi-device interfaces through various levels of
automation. However, when designers selected the completely automatic solution
sometimes it happened that what they get was rather different from what they wanted
(Figure 1 shows an example [12]). Thus, there was a need for providing designers
with better support for tailoring the transformations to their needs.

Once a suitable description of the abstract user interface has been obtained from a

given task model, it is important that its properties be adjusted to increase usability for
the generated presentations. Designers may also decide to start defining the abstract
interface from scratch, bypassing the task modelling phase.

In order to deal with all these issues we decided to extend TERESA functionalities
by adding new features, in particular, enabling changes, even radical ones, in the
properties of abstract user interface elements and the ability to develop an abstract
user interface from scratch.

Supporting Flexible Development of Multi-device Interfaces 349

Fig. 1. Example of mismatch between designer’s goals and result of automatic generation.

Once an abstract user interface has been created, there are various levels of
modifications that can be possible:

 Modifying the structure of a presentation without changing the associated
interactors. This can be performed in different ways: moving the orders of
the interactors within a composition operator, changing, adding or
removing composition operators;

 Modifying the association between interactors and presentations without
changing existing interactors. This can be performed by merging or
splitting existing presentations or moving one interactor from one
presentation to another.

 Modifying the set of available interactors, this means changing the type of
interactors, adding or removing interactors (this can be done by either
working on single interactors or adding or removing groups of interactors
or entire presentations).

In order to avoid confusing designers the editing features have to be explicitly
enabled. Then, to ease the use of these functionalities, a number of features have been
introduced. The type of an interactor is explicitly represented through an icon (as are
the task categories in the task model) and modifications to the interactors order within
a presentation can be performed through a drag and drop function. The result of a
completely automatic transformation from the task model to the abstract user interface
is a set of presentations (which are listed on the left side of the control panel, see
Figure 2) and the related connections defining navigation through them. When one
presentation is selected then its logical structure in terms of interactors and

350 F. Correani, G. Mori, and F. Paternò

composition operators is shown in the central part. Designers can select either
composition operators or interactors and the corresponding attributes are shown in the
bottom part. The position of an interactor in the presentation can be moved through
drag and drop interactions. If editing has been enabled it is also possible to change the
type of operators and interactors. For example, in Figure 2 there is a change of a
Grouping operator.

Fig. 2. Example of change of composition operator.

The editor of the abstract user interface (see Figure 3) provides designers with a

view on various aspects that can be modified. One panel indicates the list of
presentations defined so far. The logical structure of the currently selected
presentation is shown as well. It can be represented either showing the logical
structure in a tree-like manner or through the list of the elements composing it. The
concrete aspects of the currently selected interactor are displayed in a separate panel.
For example, in the figure a navigator interactor has been selected and its identifier,
type, concrete implementation (in this case through a graphical link) and related

Supporting Flexible Development of Multi-device Interfaces 351

attributes (in this case the image) are shown in the associated panel. Even the
navigation through the various presentations is represented and can be edited: it is
defined by a list of connections, each one defined by the interactor that triggers the
change and the target presentation. The tool also provides the possibility of showing
the corresponding XML-based specification and the logs of the designer interactions
with the tool.

Fig. 3. Tool support for editing the abstract and the concrete user interface.

Lastly, a preview of the associated interface can be provided in order to allow
designers to get a more precise idea of the resulting interface. Figure 4 shows the
interface corresponding to the abstract/concrete presentation in Figure 3. Three
navigator interactors are implemented through graphical links to other points in the
application, and are grouped on the same row. In turn, this group is included in an
additional group arranged vertically together with a description element that is
implemented through images and text.

352 F. Correani, G. Mori, and F. Paternò

Fig. 4. The user interface corresponding to the concrete interface obtained through preview.

4 Support for Redesign

Nowadays many devices provide access to Web pages: computers, mobile phones,
PDAs, etc. Often there is a need for redesigning the user interface of an application
for desktop systems into a user interface for a mobile device. Some authors call this
type of transformation graceful degradation [5]. One main difference between such
platforms is the dimension of the screen (a mobile phone cannot support as many
widgets as a desktop computer in a presentation), so the same page will be displayed
differently or through a different number of pages on different devices. Transcoding
techniques (such as those from HTML to WML) are usually based on syntactical
analysis and transformations, thus producing results which are poor in terms of
usability because they tend to propose the same design in devices with different
possibilities in terms of interaction resources.

In this section we describe the solution adopted to transform pages written for a
desktop computer into pages for a mobile phone. In our transformation we have
classified the type of mobile phones based on the screen size and other parameters,
which determine the number of widgets that can be supported in a presentation. We
thus group such devices into three categories: large, medium or small. In the
transformation we consider that a Web page for a specific device can display a limited
number of interactors [11] that depends on the type of platform. Obviously, the
number of interactors supported in a desktop presentation will be greater than the
number of interactors contained in a mobile phone presentation, so a desktop Web
presentation will be divided into many mobile phone presentations to still support
interactions with all the original interactors.

Supporting Flexible Development of Multi-device Interfaces 353

In our transformation we consider the user interface at the concrete level. This
provides us with some semantic information that can be useful for identifying
meaningful ways to split the desktop presentations along with the user interface state
information (the actual implemented elements, such as labels, images, …). We also
consider some information from the abstract level (see Figure 5): in particular the
abstract level indicates what type of interactors and composition operators are in the
presentation analysed. The redesign module analyses such inputs and generates an
abstract and concrete description for the mobile device from which it is possible to
automatically obtain the corresponding user interfaces. The redesign module also
decides how abstract interactors and composition operators should be implemented in
the target mobile platform. Thus, settings and attributes should change consequently
depending on the platform. For example, a grouping operator can be represented by a
field set in a desktop page but not in a page for a small mobile phone.

Abstract User
Interface

Abstract User
Interface

Concrete User

Interface

Redesign

Concrete User
Interface

Mobile User Interface Desktop User Interface

Fig. 5. The architecture of the redesign feature in TERESA.

In order to automatically redesign a desktop presentation for a mobile presentation we
need to consider the limits of the available resources and semantic information. If we
only consider the physical limitations we could divide large pages into small pages
which are not meaningful. To avoid this, we also consider the composition operators
indicated in the presentation specification. To this end, the algorithm tries to maintain
groups of interactors (that are composed through some operator) for each page, thus
preserving the communication goals of the designer. However, this is not always
possible because of the limitations of the target platform. In this case, the algorithm
aims to equally distribute the interactors into presentations of the mobile device. For
example if the number of interactors supported for a large mobile presentation is six,
and a desktop presentation contains a Grouping with eight interactors, this can be
transformed into two mobile presentations, each one containing respectively a
Grouping of four interactors. Since the composition operators capture semantic
relations that designers want to communicate to users, this seems to be a good

354 F. Correani, G. Mori, and F. Paternò

criterion for identifying the elements that are logically related and should be in the
same presentation. In addition, the splitting of the pages requires a change in the
navigation structure with the need of additional navigator interactors that allow the
access to the newly created pages. The transformation also considers the possibility of
modifying some interface elements. For example, the images are either resized or
removed if there is no room for them in the resulting interfaces.

Fig. 6. Example of desktop Web user interface.

In order to explain the transformation we can consider a specific example of a desktop
Web site and see how one of its pages (Figure 6) can be transformed using our
method. The automatic transformation starts with the XML specification of the
Concrete Desktop User Interface and creates the corresponding DOM tree-structure.
The concrete user interface contains interactors (such as text, image, text_edit,
single_choice, multiple_choice, control, etc) and composition operators (grouping,
ordering, hierarchy or relation) which define how to structure them. A composition
operator can contain other interactors and also other composition operators. Figure 7
represents the tree-structure of the XML file for the desktop_ Download presentation
shown in Figure 6.

Grouping 1 Grouping 0

Supporting Flexible Development of Multi-device Interfaces 355

R0

Download
Software

Please
fill
the…

G0 G1 G2

Name Last
Name

Organ-
ization

Email City Country Pur-
pose

 List
Subscr.

 Lan-
guage

Sys-
tem

 Sub-
mit

Cancel

Fig. 7. Tree-structure of XML file for the “desktop_Download” presentation.

The resulting structure contains the following elements:

- composition operator R0 , contains 2 interactors (“Download Software”,
“Please fill the form…”) and 3 groupings (G0, G1, G2);

- composition operator G0 , contains 8 interactors (Name, Lastname,
Organization, Email, City, Country, Purpose, List Subscription);

- composition operator G1 , contains 2 interactors (Language, System);
- composition operator G2, contains 2 interactors (Submit,Cancel);

The relation operator involves all the elements of the page: the elementary
description interactor “Download Software”, the elementary text interactor “Please
fill in the form…” and the elements made up of the three aforementioned grouping
operators. In general, the relation operator identifies a relation between the last
element and all the other elements involved in the operator. In this case, the last
element is represented by the composition operator G2 which groups the “Submit”
and “Cancel” buttons. In Figure 7 we can see the names of the interactors used in the
desktop_Download presentation. There are also two grouping operators (G0 and G1)
representing the two fieldsets in the user interface in Figure 6 and a grouping operator
(G2) involving the two buttons “Submit” and “Cancel”.

Overall, this desktop presentation contains 14 interactors, which are too many for a
mobile phone presentation. We assume that a presentation for a large mobile phone
(such as a smartphone) can contain a maximum number of six interactors. Our
transformation divides the “desktop_Download” presentation of the example into four
presentations for mobile devices. Considering the tree structure of the XML
specification of the Concrete User Interface in Figure 7, the algorithm makes a depth
first visit starting with the root, and generates the mobile presentations by inserting
elements contained in each level until the maximum number of widgets supported by
the target platform is reached.
The algorithm substitutes each composition operator (in the example G0 and G1) that
cannot fit in the presentation with a link pointing to a mobile presentation containing
their first elements. In this case the two links point to the mobile_Download2 and
mobile_Download4 presentations, which contain the first elements of G0 (i.e.,
“Name”) and the first elements of G1 (i.e., “Language”), respectively.

356 F. Correani, G. Mori, and F. Paternò

So looking at the example, the algorithm begins to insert elements in the first
“mobile_Download1” presentation and when it finds a composition operator (such as
G0), it starts to generate a new mobile presentation with its elements; so we obtain:

mobile_download1 = {R(“Download Software”, “Please fill the form…”, G0, ….)}

The composition operator for the elements in mobile_Download1 is the Relation R0.
Continuing the visit, the algorithm explores the composition operator G0. It has 8
elements but they cannot fit in a single new presentation. Thus, two presentations are
created and the algorithm distributes the elements equally between them. We obtain:

mobile_Download2 = {G(Name, Lastname, Organization, Email)}
mobile_Download3 = {G(City, Country, Purpose, List Subscription)}

The composition operator for these two mobile presentations is grouping because the
elements are part of G0. The depth first visit of the tree continues and reaches G1. It
inserts a corresponding link in the mobile_Download1 presentation, which points to
the new generated mobile_Download4 presentation where it inserts the elements of
G1.

Finally, we obtain:

mobile_Download1 = { R(“Download Software”, “Please fill the form…”, G0, G1,
G2) }
mobile_Download2 = {G(Name, Lastname, Organization, Email)}
mobile_Download3 = {G(City, Country, Purpose,List Subscription)}
mobile_Download4 = {G(Language, System)}

The entire last element of a Relation should be in the same presentation containing the
elements composed by a Relation composition operator because it is the element that
defines the association with the others elements. When the last element is another
composition of elements (such as G2), it is inserted into the presentation completely.

Thus, mobile_Download1 presentation becomes:

mobile_Download1 = { R(“Download Software”, “Please fill the form…”, “Form –
part 1”, “Form – Part 2”, G(Submit,Cancel)) }

Figure 8 shows the resulting presentations for the mobile device.

4.1 Connections

The XML specifications of concrete and abstract interfaces also contain tags for
connections (elementary_connections or complex_connections). An elementary_ con-
nection permits moving from one presentation to another and is triggered by a single
interactor. A complex_connection is triggered when a Boolean condition related to
multiple interactors is satisfied.

Supporting Flexible Development of Multi-device Interfaces 357

Fig. 8. Result of example desktop page transformed into four mobile pages.

The transformation creates the following connections among the presentations for
the mobile phone:

 original connections of desktop presentations are associated to the mobile
presentations that contain the interactor triggering the transition. In the
example the connection associated with the “Submit” button is asociated
with the mobile_Download1 presentation. The destination for each of these
connections is the first mobile presentation obtained from the splitting of the
original desktop destination presentations;

 composition operators that are substituted by a link introduce new
connections to presentations containing the first interactor associated with
the composition operators. In the example, we have two new links “Form -
Part 1” and “Form – Part 2” which support access to the pages associated
with the first interactor of G0 and the first interactor of G1 respectively:

mobile_Download1 ===== Form – Part 1 ======>
mobile_Download2

mobile_Download1 ==== Form – Part 2 ======> mobile_Download4

mobile_Download1

mobile_Download2 mobile_Download3

mobile_Download4

358 F. Correani, G. Mori, and F. Paternò

 when a set of interactors composed through a specific operator has been split
into multiple presentations we need to introduce new connections to navigate
through the new mobile presentations. In the example previous and next
links have been introduced automatically by the tool and we obtain the
following connections:

mobile_Download2 ===== next ======> mobile_Download3

mobile_Download3 ===== prev ======> mobile_Download2

the connections above, are useful to navigate between presentations
“mobile_Download2” and “mobile_Download3” which contain the results of
the splitting of the G0 elements.

 mobile_Download2 ===== home ======> mobile_Download1
mobile_Download4 ===== home ======> mobile_Download1

the connections above are the corresponding connections for going back
from presentations containing the first elements to presentations containing
the links to the newly created pages. In the example, we have the “Form –
Part 1” link, which is contained in “mobile_Download1” presentation.
Likewise, we have the “Form – Part 2” link contained in
“mobile_Download1” presentation. Thus, we need two home links that allow
going back to mobile_Downolad1 from mobile_Download2 and
mobile_Download4.

 complex desktop connections may need to be split into elementary
connections if the associated interactors are included in different mobile
presentations (in the example of Figure 6 there are no complex connections).

4.2 Other Considerations

Our transformation addresses a number of further issues. Attributes for desktop
presentations must be adapted to mobile presentations. For example, the maximum
dimension for a font used in a desktop presentation different from the maximum for a
mobile device, and consequently large fonts are resized. The transformation of
desktop presentations containing images produces mobile presentations also
containing images only if the target mobile devices support them. Because of the
dimension of mobile screens, original desktop images need to be resized for the
specific mobile device. In our classification, images are only supported by large and
medium mobile phones.

In consideration of the screen size of most common models of mobile phones
currently on the market, we have calculated two distinct average screen dimensions:
one for large models and another for medium size. From these two average screen

Supporting Flexible Development of Multi-device Interfaces 359

dimensions (in pixels), we have deduced the reasonable max dimensions for an image
in a presentation for both large and medium devices. The transformed images for
mobile devices maintain the same aspect ratio as those of the original desktop
interface. In mobile_Download1 presentation we have an example of resize of image
“Download Software”.

Interactors often do not have the same weight (in terms of screen consumption) and
this has consequences on presentations. From this viewpoint, single_selection and
multiple_selection interactors can be critical depending on their cardinality. For
example, a single_selection composed of 100 choices can be represented on a desktop
page through a list, but this is not suitable for a mobile page because users should
scroll a lots of items on a device with a small screen. A possible solution could be
dividing 100 choices in 10 subgroups in alphabetical order (a-c, d-f,.. ...w-z) and each
subgroup is connected to another page containing a pull-down menu only composed
of the limited number of choices associated with that subgroup and not of all the
original 100 choices. For example, the menu for selection of a Country present in
desktop presentation can be transformed as shown in Figure 9.

Fig. 9. Transformation of a single selection interactor for desktop system into one interactor
for mobile presentations.

In the previous example of Figure 8 another simple solution has been applied,
substituting the country pull-down menu of desktop_Download presentation with a
text edit in the mobile_Download3 presentation.

In general, the problem of redesigning and transforming a set of presentations from
a platform to another is not easy and often involves many complex aspects related to
user interface design.

5 Conclusions and Future Work

We have presented an approach to flexible multi-user interface design. The approach
is supported by the new version of the TERESA tool, which is publicly available at
http://giove.isti.cnr.it/teresa.html.

It provides designers with multiple entry points to the design process (which can be
the task, abstract, or concrete user interface level) in order to change the results of
automatic transformations from the task to the lower levels, and support redesign for
different platforms. This last feature has also been considered in the CAMELEON

360 F. Correani, G. Mori, and F. Paternò

project where the Vaquita tool has been used for reverse engineering of the design of
a desktop Web interface. Its results are then input into the TERESA tool for
redesigning for a mobile platform.

Future work will be dedicated to integrating natural interaction techniques in this
environment in order to allow even people with little programming experience to
easily use it in the design of multi-device interfaces. We also plan to add a feature in
TERESA so that when a description at a lower level is modified, then such
modifications are reflected into the description at the upper levels.

Acknowledgments

This work has been supported by the CAMELEON EU IST Project
(http://giove.isti.cnr.it/cameleon.html). We also thank our colleagues in the project for
useful discussions.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J. UIML: An
Appliance-Independent XML User Interface Language, Proceedings of the 8th WWW
conference, 1999.

2. Bouillon, L., Vanderdonckt, J., Retargeting Web Pages to other Computing Platforms,
Proceedings of IEEE 9th Working Conference on Reverse Engineering WCRE'2002
(Richmond, 29 October-1 November 2002), IEEE Computer Society Press, Los Alamitos,
2002, pp. 339-348.

3. Calvary, G. Coutaz, J. Thevenin, D. Limbourg, Q. Bouillon, L. Vanderdonckt, J., “A
Unifying Reference Framework for Multi-target User interfaces”, Interacting with
Computers Vol. 15/3, Pages 289-308, Elsevier.

4. G. Calvary, J. Coutaz, D. Thevenin. A Unifying Reference Framework for the Development
of Plastic User Interfaces. IFIP WG2.7 (13.2) Working Conference, EHCI01,Toronto, May
2001, Springer Verlag Publ., LNCS 2254, M. Reed Little, L. Nigay Eds, pp.173-192.

5. Florins M., Vanderdonckt J., Graceful degradation of user interfaces as a design method for
multiplatform systems, Proceedings ACM IUI’04, Funchal, ACM Press.

6. G. Mori, F. Paternò, C. Santoro, Design and Development of Multi-Device User Interfaces
through Multiple Logical Descriptions, IEEE Transactions on Software Engineering,
August 2004, Vol.30, N.8, pp.507-520, IEEE Press.

7. G. Mori, F. Paternò, C. Santoro, “CTTE: Support for Developing and Analysing Task
Models for Interactive System Design”, IEEE Transactions on Software Engineering, pp.
797-813, August 2002 (Vol. 28, No. 8), IEEE Press.

8. Mullet, K., Sano, D., Designing Visual Interfaces. Prentice Hall, 1995.
9. Paganelli, L., Paternò, F. A Tool for Creating Design Models from Web Site Code,

International Journal of Software Engineering and Knowledge Engineering, World
Scientific Publishing 13(2), pp. 169-189 (2003).

10. Paternò, F., Model-Based Design and Evaluation of Interactive Application. Springer
Verlag, ISBN 1-85233-155-0, 1999.

11. Paternò, F., Leonardi, A. A Semantics-based Approach to the Design and Implementation
of Interaction Objects, Computer Graphics Forum, Blackwell Publisher, Vol.13, N.3,
pp.195-204, 1994.

Supporting Flexible Development of Multi-device Interfaces 361

12. Pribeanu C., Personal Communication, 2004.
13. Puerta, A., Eisenstein, J., Towards a General Computational Framework for Model-based

Interface Development Systems, Proceedings ACM IUI’99, pp.171-178.
14. Puerta, A., Eisenstein, XIML: A Common Representation for Interaction Data, Proceedings

ACM IUI’01, pp.214-215.

Discussion

[Stephen Gilroy] How do you deal with mis-match between interactor support on
desktop and mobile platforms?

[Fabio Paternò] The tool implements design criteria that take into account the
features of the target platforms when it generates the corresponding concrete
user interface. The next trasformation generates the final implementation in a
language that depends on the platform. For example, it can generate XHTML
for a desktop interface or XHTML Mobile Profile for a mobile interface. In
case we want to support further implementation languages, such as WML,
we only need to add a transformation from the concrete description for
mobile devices to such implementation language. This transformation has to
take into account the specific features of the new implementation language
considered but it is easy to implement it because there is little distance in
terms of levels of abstractions between the concrete description and the
implementation language.

[José Macías] If I understand well, Teresa does the forward engineering and
WebRevEnge does the reverse engineering one. Have you thought of combining both
tools to obtain the whole cycle?

[Fabio Paternò] Yes, this is the natural evolution of this research, and we
think it will be very interesting to have a single tool able to suppport various
levels of forward and reverse engineering.

[José Macias] How can you get the task model from an HTML page in WebRevEnge?

[Fabio Paternò] We have analysed the most usual tasks of web applications
and then we have built a tool that it is able to analyze the HTML code and
identify first the corresponding basic tasks, next the tasks that are
semantically related and consequently can be considered sub-task of a
common higher level task, and then the temporal relations among tasks
supported in one page or across multiple pages. Following this type of
approach we have identified a good number of rules that are supported by the
WebRevEnge tool, which is publicly available and documented in a journal
publication.

[Jürgen Ziegler] Can the tool decide when a model is too complex to map to a mobile
device?

[Fabio Paternò] Not automatically; one needs to go back to the task model in
order to identify tasks not suitable for a mobile device.

362 F. Correani, G. Mori, and F. Paternò

[Jürgen Ziegler] Can you create alternative presentations for mobile phones instead of
those used on desktops?

[Fabio Paternò] The tool generates new presentations for mobile devices
according to the rules described in the paper. To this end the content for the
desktop version is used and, in some cases, transformed. Future work will be
dedicated to make more flexible the content transformation.

[Robbie Schaefer] Regarding the page splitting algorithm: Do you see a danger that
user interfaces are generated which are processed in the wrong order by the user?
What about a sequential approach?

[Fabio Paternò] Our transformation provides results in which users have
some flexibility in the choice of the order to follow when accessing the
mobile pages. Users may be reluctant to process long sequences of pages on
mobile phones. User evaluation has to show whether our design decision is
the most appropriate.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 363-382, 2005.
 IFIP International Federation for Information Processing 2005

The Software Design Board: A Tool Supporting
Workstyle Transitions in Collaborative Software Design

James Wu and T.C.N Graham

School of Computing, Queen’s University
Kingston, Ontario, CANADA

{wuj,graham}@cs.queensu.ca

Abstract. Software design is a team activity, and designing effective tools to
support collaborative software design is a challenging task. Designers work
together in a variety of different styles, and move frequently between these
styles throughout the course of their work. As a result, software design tools
need to support a variety of collaborative styles, and support fluid movement
between these styles. This paper presents the Software Design Board, a
prototype collaborative design tool supporting a variety of styles of
collaboration, and facilitating transitions between them. The design of Software
Design Board was motivated by empirical research demonstrating the
importance of such support in collaborative software design, as well as activity
analysis identifying the lack of support in existing tools for different styles of
collaboration and transitions between them.

1 Introduction

The design of large, complex software systems is a team activity. A study by
DeMarco and Lister found that developers working on large projects spend up to 70%
of their time collaborating with others [6], while Jones found that team activities
account for 85% of costs in large scale development projects [18]. This degree of
interactivity between team members has necessitated the development of tools that
can support collaboration within the software design process.

Designing effective collaborative design tools is a challenging task. In addition to
technical and implementation issues associated with concurrent and/or distributed
work, designers are hampered by a lack of data on how groups work together in
software design. Collaborative applications are too often developed based on the
individual experience of the designer, rather than on detailed study of the target user
group and target tasks. This can result in tools that are neither useful nor usable.
Even when user-centred design techniques are applied, the results are often tailored
to the needs of single users, without sufficient support for collaborative work [10].

To better support collaborative work, software design tools need to support a
variety of workstyles for collaborative interaction, as well as support fluid transitions
between these workstyles. A workstyle is a characterization of the style of interaction
employed by a group of collaborators, or supported by an interactive tool [36]. For
example, co-located collaborators working at a whiteboard are engaged in an entirely

364 J. Wu and T.C.N Graham

different workstyle than distributed collaborators asynchronously sharing a document
stored in a repository. In earlier work, we have shown that members of collaborative
groups interact with each other through a variety of workstyles, and move frequently
between different workstyles throughout the course of their interactions [37].

In this paper, we present a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
appropriate to the early stages of software development, and facilitates transitions
between them. The functional requirements of the tool are informed by studies of
existing design tools and by results of empirical research into collaborative software
design activities. In presenting Software Design Board, we begin with a brief
examination of related tools in the domain. As Software Design Board is primarily
intended for use with an electronic whiteboard, these related tools are those that
support software design through the use of informal media. Next, we present the
empirical research that motivated the importance of supporting transitions in
workstyle in collaborative design. We then introduce a model for characterizing styles
of collaborative work, and show how this model is used to identify mismatches
between collaborative activities and existing tool support. Finally, we introduce the
Software Design Board and show how it supports a variety of important workstyles
and workstyle transitions.

2 Tools Supporting Collaborative Software Design Through
Informal Media

People often carry out design work using informal media such as paper or
whiteboards [20]. Particularly in the early stages of design, informal media are
appropriate as they allow design diagrams to be quickly and fluidly sketched [34].
Computational analogues of such informal media include electronic whiteboards, data
tablets and stylus input for computers. Tools supporting interaction with informal
media attempt to extend the free form, fluid interaction afforded by physical informal
media to these computational counterparts.

The main advantage of informal media tools is that they support a natural working
style without imposing significant cognitive overhead on the user through
heavyweight interaction mechanisms. They allow users to use the tool transparently,
without having to think about the tool itself. The drawback of many of these tools is
the limited, or non-existent, support for movement towards more formal, structured
work. This lack of support may limit development as a design evolves and begins to
require more formal treatment. Also, many of these tools are intended to be general-
purpose, and lack features that may be useful in the early stages of software design.

We identify three subcategories of these tools. In each, we consider an archetype
tool that is typical of the subcategory, and identify other similar tools.

 Informal CASE Tools: These are software design tools that support interaction
through informal media. Ideogramic UML [15] is a commercial tool that
evolved from the Knight research project [5]. IdeogramicUML is intended to
support the “agile” use of UML [1], meaning effective and lightweight use of
UML. It supports a wide variety of interaction devices, including PCs, tablets,
Tablet PCs and electronic whiteboards. This tool supports gesture based

The Software Design Board 365

modeling in UML, as well as free hand diagramming with no gestural
interpretation. Furthermore, IdeogramicUML only supports co-located
collaboration using electronic whiteboards, and requires additional tool
support to be used by distributed teams. Other similar tools include UML
Recognizer [21] and Tahuti [13].

 Enhanced Electronic Whiteboards: These are electronic whiteboard
applications that attempt to replicate and extend the functionality of physical
whiteboards using electronic whiteboards such as a Smartboard [28]. Flatland
[24] is an augmented whiteboard application designed to support informal
office work. Flatland provides various stylus-appropriate techniques for
interaction and space management on an electronic whiteboard. Furthermore,
it provides the ability to apply different behaviors to define application
semantics. Flatland allows different segments on the board to respond
differently to stylus input based on the applied semantics. However, it does not
specifically support design tasks, but is intended to support for informal work
in an office environment and as such can be appropriate in early software
design tasks. Furthermore, Flatland does not support distributed collaboration,
but only facilitates teamwork in a co-located setting. Other similar tools
include Tivoli [25], Dolphin [30], and MagicBoard [4].

 Shared Drawing Tools: These tools support collaborative sketching or drawing
tasks such as often found in early design work [31, 16] without providing
support for any specific notation. ClearBoard [16] is a shared drawing
program that allows two remote users to simultaneously draw in a shared
space while providing awareness information such as hand gestures and gaze.
It is based on the metaphor of ‘talking through, and drawing on, a big
transparent glass board’ [16]. Clearboard also provides additional functionality
such as simple stroke manipulations, recording of working results, as well as
the ability to integrate generic files into the drawing space. Other similar tools
include Commune [3], GroupSketch [11], and VideoWhiteboard [32].

Tools supporting interaction through informal media support collaboration in

software design by facilitating unstructured interaction in a way appropriate to the
early, creative design stages. They support an informal style of work that allows users
to interact naturally and to use the tool transparently without imposing unnecessary
overhead. Informal media tools support a small group of designers, and rely on social
protocol to mediate group interaction. They typically produce informal artifacts of
unbound semantics and free-form syntax. Most importantly for our purposes, informal
media tools are typically independent of synchronicity or location, i.e. they support
synchronous and asynchronous, as well as distributed and co-located interactions.
This means they can support transitions in workstyle between synchronous/asynchro-
nous and co-located and distributed styles of interaction.

3 Importance of Workstyles in Collaborative Software Design

We now present the empirical research that motivated the importance of supporting
transitions in workstyle in collaborative design. We have performed extensive

366 J. Wu and T.C.N Graham

empirical studies into the nature of collaboration in software design [37]. We
followed 5 development groups at a large software company over a 6-week period.
Our research illustrated that not only is significant time spent collaborating within the
design process, but also significant time and effort is spent in transitions between
different collaborative styles of work. For example, team members may move
frequently between asynchronous and synchronous workstyles, or between co-located
and distributed workstyles, throughout the course of a single workday. These
observations highlight the need for collaborative design tools that provide support for
performing transitions between the various activities and working styles in which
designers engage. Although some existing tools facilitate transitions in software
designers’ workstyles [7, 21, 12], most provide only basic communication facilities.
More importantly, existing support for workstyle transitions is not commensurate with
the frequency with which designers change between collaborative work styles [37,
38].

During our study, team members were observed to be highly interactive, spending
on average more than two hours per day on communication tasks. Communication
was predominantly face to face or via telephone or email. Also, team members often
changed various aspects of their interaction such as location, synchronicity or
modality of communication. These results provide evidence regarding the importance
of collaboration and communication in software design, and motivate the need to
support these activities in software design tools.

We also found that developers change locations frequently in order to collaborate,
showing that on average, developers collaborated in more than 6 locations per day.
According to interviews, this was due to a strong preference to work face-to-face.
Many designers felt it was simpler, quicker and generally more efficient to use
standard communication, including meeting face-to-face, than to establish remote
interaction though tools. This often meant that people would walk up and down
multiple flights of stairs numerous times each day to meet in person rather than use a
telephone or another collaboration tool. These changes in location further indicate the
frequency of workstyle transitions in collaborative software design.

Designers were also observed to frequently change the way in which they
communicate, and to carry on multiple, simultaneous threads of collaboration. We
found that it is typical for designers to attend a face-to-face meeting on a topic, then
follow up with email, ask a supplementary question by telephone, follow up with
more email, and so forth. Within individual threads of collaboration, we observed that
designers change the mechanism by which they communicate more than once per day
on average. These changes often involve a change in synchronicity (e.g. a change
from telephone to email involves a change from synchronous to asynchronous
interaction). Moreover, developers on average carried out more than three
simultaneous threaded interactions in the course of a single day. All of these changes,
between communication modalities, synchronicity and collaboration groups, reflect
transitions in workstyle.

The results of this study have clear implications for the design of tools supporting
team-based software design in large companies. These results show the importance of
flexibility with respect to how a tool supports collaboration. Changes in physical
location, synchronicity and communication modality are frequent, and tools should be
designed to support such changes. Current tools do not sufficiently support such
changes, if at all. In most existing tools, changes in synchronicity and location require

The Software Design Board 367

a change in modality (e.g. from face-to-face to telephone) as well, imposing
additional overhead on designers that choose to use them. More information on these
empirical results can be found in the full study [37].

4 Understanding Workstyles

The Workstyle Model [36] allows us to characterize styles of collaborative work,
either those employed by a group or supported by a tool. We can use these
characterizations to identify mismatches between common activities and available
tool support. These mismatches highlight areas where additional tool support is
needed within a domain. Workstyle modeling complements task modeling [8] with
supplemental information about how people communicate and coordinate their
activities, and about the nature of the artifact to be produced. We have applied this
model to the evaluation of how software designers collaborate, the forms of
collaboration a wide variety of software design tools support, and to the design of the
Software Design Board application itself. The development of the model itself was
informed by the empirical study, presented in the previous section, as well as by
informal laboratory studies of tools and designers.

In order to understand the relevance of workstyle analysis, consider the task of
creating a design in some formal diagrammatic notation. A task model can identify
the activities involved in creating such a design: drawing and labeling nodes,
connecting them with relations, editing and reformatting diagram elements, and so
forth. This model of design activities might lead to the development of a tool similar
to Rational Rose [26] permitting mouse-based structural editing of design diagrams.
However, in addition to the tasks that need to be performed, it is important to
understand the users’ preferred workstyle before committing to a design. Designers
may be working in a brainstorming style, or may be recording precise documentation
from which a system is to be built. A brainstorming workstyle is well supported by a
whiteboard, which provides sufficient space for small groups to work, and supports a
fluid style of interaction where multiple designers may interact with the design
artifact in parallel. Alternatively, recording of precise documentation is well
supported by a traditional Computer-Aided Software Engineering (CASE) tool. It is
important to note that, though both tools support the activities identified in the task
model, they do so in different ways that are appropriate to entirely different styles of
work. The workstyle model helps in the analysis of peoples’ goals and tasks by
helping to understand their preferred style of work.

The Workstyle model characterizes a working style as an eight dimensional space
that addresses the style of collaboration and communication between designers and
the properties of the artifacts that are created during the collaboration. The
functionality of collaborative design tools can be plotted in this space to specify the
set of workstyles that they can support. It then becomes possible to compare
designers’ preferred workstyles to those supported by available tools and to identify
potential task/tool mismatches. These mismatches can be used to guide the design of
new tools that are more appropriate to particular design activities. Figure 1 depicts a
graphical representation of the axes of Workstyle Model on which workstyle analyses
are plotted

368 J. Wu and T.C.N Graham

4.1 Dimensions Describing Collaboration Style

The first four dimensions of the model describe the nature of the collaboration in
which a group is engaged, or that can be supported by a tool. They are defined as
follows:

 Location: The location axis refers to the distribution of the people involved in
the collaboration. As people become more geographically distributed,
supporting some collaborative workstyles becomes increasingly difficult [27].

 Synchronicity: The synchronicity axis describes the temporal nature of the
collaboration. People may work together at the same time (synchronously) or at
different times (asynchronously).

 Group Size: The group size axis captures the number of people involved in the
collaboration. Support for larger groups typically comes at the expense of
intimacy in the interaction between collaborators.

 Coordination: This axis describes how users’ activities are coordinated,
whether by the choice of tools they are using or through the adoption of some
coordination model [22].

4.2 Dimensions Describing Artifact Style

The remaining four dimensions describe the nature of the artifacts produced by the
group, or able to be produced by a tool. They are defined as follows:

 Syntactic Correctness: The artifact being produced may be required to follow a
precise syntax. This requirement may inhibit progress in early stages of design
by forcing initially abstract designs to conform to a predetermined syntax [20,
35].

 Semantic Correctness: An artifact is considered to be semantically sound if its
meaning is unambiguous and free of contradiction. The production of
semantically sound artifacts facilitates automated analysis and evolution.

 Archivability: Archivability represents the difficulty of saving an artifact so
that it can be used at a later time. For example, word processing documents
have high archivability, as they can be saved to disk and retrieved later.

 Modifiability: This axis represents the ease with which an artifact can be
modified. For example, small modifications to a whiteboard drawing are
simply performed by erasing and redrawing.

4.3 Applying the Workstyle Model

The Workstyle Model can be applied to assess tools and/or the interaction style of
users. The model can be used to evaluate the support provided by individual tools for
various working styles, or applied to users to evaluate their working styles while
accomplishing various tasks with preferred tools. To do so, values for each property
are plotted on a two-dimensional representation of the model, as seen in Figure 1. A
single workstyle is represented as a point in an eight dimensional space, while a range
of workstyles is represented as a region in this space. Support for a single value in a

The Software Design Board 369

particular property is indicated by a line intersecting the related axis, while a region
over the axis represents support for a range of values in that property. So a plot that
consists of a single line with no expanded areas can represent a tool or set of tools that
supports a single, rigid workstyle. Similarly, if applied to users, the plot may represent
a particular style of work used to accomplish some particular task. Conversely, a plot
that covers an area of the graph may represent a tool or set of tools that supports a
range of workstyles and transitions between them. Similarly, if applied to users, it
may represent a change in the style of interaction that has occurred over a period of
time. Once plotted, differences in the workstyles supported by various tools become
visually apparent. These plots can be compared to workstyle plots of users
accomplishing the tasks supported by those tools in their preferred manner.
Mismatches between these plots identify tools that are not providing sufficient
usability for their supported tasks. More detail and examples of applying the
Workstyle Model can be found in [36, 38].

4.3.1 Workstyle Example – UML Design Tools

Fig. 1. A Workstyle comparison between UML tools and standard whiteboards in support for
typical brainstorming activities.

It is useful to consider the workstyle supported by popular UML design tools such as
Rational Rose [26]. Design tools such as these are a good fit with workstyles where
little real-time communication with other designers is required, and where the goal is
to create precise, archival designs. However, these design tools provide poor support
for the early stages of design, such as brainstorming. During these phases, designers
spend significant time on communications tasks.

The inappropriateness of UML design tools for early stages of design can be

clearly shown by examining the brainstorming workstyle. As shown in Figure 1,

370 J. Wu and T.C.N Graham

brainstorming is typically carried out by small groups working face to face, using
free-form coordination and social protocols to determine who gets to speak or write
next. In brainstorming, designers do not wish to be distracted by requirements to be
syntactically correct, or even semantically sound [2, 31]. Modifiability is important
as early designs evolve rapidly, and archivability is important to allow early designs
to be migrated to more formal designs.

Figure 1 clearly shows that while UML design tools may support the core tasks of
the early stages of design, they do not support the workstyle of early design
(brainstorming). The emphasis on asynchronous, moderated work with strong
emphasis on syntactic correctness and semantic soundness is incompatible with the
free-form brainstorming workstyle. A better match to the workstyle of early design is
the workstyle supported by standard whiteboards. These tools support small groups of
co-located users working synchronously, and rely upon social protocol to mediate
user interaction. They impose no requirements on syntax, nor do they interpret any
semantic meaning from the input.. The main incompatibility of these tools to the
brainstorming workstyle is the limited ability to easily archive artifacts created on the
board.

In this example, we have seen how workstyle analysis can be applied to a tool and
compared to the workstyle of the collaborative activities in which it may be used.
Such comparisons can highlight incompatibilities between a tool and the way in
which it will be used within a particular context. Through this mechanism, tools can
be selected for use in particular contexts to provide better usability to users carrying
out their tasks.

5 Software Design Board: Supporting Workstyle Transitions in
Software Design

Based on the findings from our empirical study into collaboration in software design,
as well as workstyle analyses revealing inadequacies of existing design tools, we
developed the Software Design Board to facilitate transitions between some common
working styles as described by the Workstyle Model. This is achieved through the
integration of informal media and flexible collaboration mechanisms, as well as
support for migration between different software tools, devices and collaborative
contexts. These facilities are intended to support fluid transitions between the some of
the different styles of work in which designers are frequently engaged, specifically
synchronous/asynchronous and/or co-located/distributed collaboration, and more
generally, formal/informal interactions.

5.1 Functional Requirements

The functional requirements for the Software Design Board evolved from workstyle
analyses of existing tools and of developers in the early stages of software design. For
example, workstyle analyses of existing tools for collaborative software design
revealed that each support only a single or limited set of collaborative workstyles.
Furthermore, the empirical studies described in Section 3 revealed a variety of

The Software Design Board 371

behavioral patterns in which developers frequently engage. Most importantly, the
study found that team members regularly changed the nature of their interactions with
each other in terms of synchronicity, location and modality. The results have specific
implications on tool design; tools should be designed to support these frequent
changes in workstyle.

All of these findings reveal some open problems in the area of tool support for
collaborative software design, and motivated the functional requirements driving the
design of Software Design Board. Specifically, the following are aspects of
collaborative design that are poorly supported in existing tools:
 Unsupported Workstyles: Workstyle analyses of existing tools revealed that some

workstyles are not supported by any individual class of tools. For example, large
groups of synchronous collaborators, whether distributed or co-located, are not
well supported by any available tool. This may be a result of hardware restrictions,
or the limited applicability of such workstyles in practice. Additionally, no existing
tools allow free-form interaction while supporting the creation of syntactically and
semantically refined artifacts. Even informal CASE tools such as IdeogramicUML
[15] employ a gesture-based syntax that places restrictions on free-form
interaction.

 Functional Requirement 1: Support the freehand creation of
syntactically correct UML diagrams.

 Lack of Support for Workstyle Evolution: Workstyle analysis of existing tools
revealed that individual tools only support a single or limited set of workstyles, and
provide little or no support for movement between workstyles. However, our
empirical investigations found that designers frequently move between
synchronous/asynchronous and collocated/distributed styles of interaction.
Additionally, transitions between workstyles often involve changes between
interaction devices. For example, moving from an informal to a more formal
workstyle may involve switching from an electronic whiteboard to a PC. Available
tools do not sufficiently support migration between devices.

 Functional Requirement 2: Support transitions between synchronous
and asynchronous styles of collaboration.

 Functional Requirement 3: Support transitions between collocated and
distributed styles of collaboration.

 Functional Requirement 4: Support transitions between physical
devices.

 Lack of Support for Multiple Collaborative Contexts: In addition to frequently
changing their collaborative workstyle, the results of the study presented in Section
3 show that individual designers also switch amongst a number of concurrent
collaborative contexts. This means that they frequently move between multiple
interactions with different groups. For example, a given designer may be
participating in a number of concurrent projects or tasks, and may frequently
switch their focus from one project to another. Furthermore, designers may
participate concurrently in multiple collaborative contexts.

 Functional Requirement 5: Support transitions between collaborative
contexts.

 Limited of Support for Integration of Existing Applications: Current meta-tools that
support sharing of existing applications, such as Netmeeting [23], impose

372 J. Wu and T.C.N Graham

significant restrictions on collaboration that can be inappropriate to many of the
important workstyles found identified during the empirical study. Mechanisms for
integrating existing tools into a variety of collaborative workstyles would allow
designers to collaborate on wide variety of tasks without giving up their preferred
tools for accomplishing those tasks.

 Functional Requirement 6: Support integration of existing applications
into all supported workstyles.

5.2 Overview of the Software Design Board

The Software Design Board (SDB) is a shared whiteboard application with additional
functionality that supports collaborative software design. As seen in Figure 2, user
interaction with this tool is similar to a typical interaction with a standard whiteboard.

Fig. 2. Using Software Design Board.

Typical sessions using the tool via different devices are depicted in Figure 3. When
used on a PC, the interface supports drawing using a typical structured drawing tool.
Functionality is accessed through typical drop-down menus. When used on an
electronic whiteboard or tablet PC, the user interface supports unstructured pen input
of stroke information for freehand data such as diagrams, annotations, notes and lists.

This feature is in partial support of Functional Requirement 1 (Support the
freehand creation of syntactically correct UML diagrams). Unstructured stylus-based
input also provides the basis for lightweight user interaction with the tool.
Furthermore, an integrated structure recognizer [9] supports automated translation of
freehand diagrams into a more structured format appropriate for interpretation as
UML or any other box-and-arrow notation. This functionality is similar to other tools
[5, 21]. An example of this recognition functionality applied to a simple diagram is
depicted in Figure 4.

The Software Design Board 373

In addition, objects can be placed on the board in and amongst the free hand data.
These objects can include design documents or diagrams that may be browsed and
annotated, or external programs that can execute other functionality. For example, a
design document may be embedded into some area of the board allowing it to be
communally browsed and annotated within the context of the other data on the board.
This document is opened and displayed within the tool with which it was created, and
all of that tool’s functionality is accessible through the SDB’s interface. This
functionality supports Functional Requirement 6 (Support integration of existing
applications into all supported workstyles). A typical session with an embedded
design artifact is depicted in Figure 5.

Fig. 3. Typical single-user sessions in Software Design Board. A PC user manipulates
structured drawing elements and text, and interacts through drop-down menus. A whiteboard
user draws free hand, and interacts through pie menus and gesture-based commands.

In order to support collaboration, the tool integrates communication and sharing

mechanisms. For example, gesture transmission is supported within the context of
synchronously shared whiteboard space. Voice communication mechanisms are
planned, but not yet implemented. Additionally, any OLE-based communication tool
can be integrated into the whiteboard space.

These communication objects are embedded and manipulated directly within the
context of the board, and are maintained with the rest of the data on the board. For
example, external applications such as web browsers or media streams may be
embedded in the board space and used for communication. These communication
mechanisms support Functional Requirement 2 (Support transitions between
synchronous and asynchronous styles of collaboration) and Functional Requirement 3
(Support transitions between co-located and distributed styles of collaboration) by

374 J. Wu and T.C.N Graham

allowing the simultaneous use of functionality supporting all of these styles of
interaction within a single application.

Fig. 4: Applying the syntax recognizer to a freehand diagram. Hand drawn elements such as
circles, squares and arrows are recognized and converted into structured drawing elements.

The whiteboard space can be divided into any number of segments. These segments
allow data to be shared in different ways. Generally, a segment is an area in the board
containing contextually related data. As with a regular whiteboard, a user explicitly
specifies the segmentation of data in the board through delineating strokes, e.g. a
surrounding box or circle. Segments can be shared with others to allow users of other
SDB clients to connect and synchronously interact with each other and share data. To
share segments asynchronously, another client connects and copies the content of the
segment to his/her local client. This data can then be manipulated without affecting
the data in the original segment. Diverging copies of segments may be manually or
automatically reconciled, if possible. When shared synchronously, data in a shared
segment is viewed in decoupled WYSIWIS [29] fashion. Furthermore, at any time a
user can change the way in which segments are shared. Synchronously shared
segments can be easily detached and shared asynchronously, and vice versa. Gesture
information is automatically transmitted between synchronously shared segments via
telepointers. This functionality also supports Functional Requirement 2 (Support
transitions between synchronous and asynchronous styles of collaboration) and
Functional Requirement 3 (Support transitions between co-located and distributed
styles of collaboration), by providing the mechanism by which users can freely and
fluidly move between (synchronously or asynchronously) shared and private data.

Furthermore, on any SDB client, different segments may be shared concurrently and
in different ways, between different groups. This functionality supports Functional
Requirement 5 (Support transitions between collaborative contexts), by allowing
users to move freely between different collaborative interactions contained within
each segment. A typical session involving segment sharing is depicted in Figure 6.

The Software Design Board 375

Fig. 5. A design document embedded in a Software Design Board session.

Fig. 6.The segment with ID binkley||-10 is shared between Baha and Nick. Baha’s mouse
pointer appears as a telepointer on Nick’s client. Nick is concurrently sharing a different
segment, with ID Desktop-64, with James.

Software Design Board implements a plastic interface [33] that can be used on
different hardware devices. While the main platform for this application is an
electronic whiteboard, it can also be accessed from a PC with or without an associated
tablet. Widget-level plasticity supports appropriate interaction through each type of

376 J. Wu and T.C.N Graham

device [17]. For example, whiteboard users can use pie-menus and gesture based
commands that are more appropriate to their stylus-based interfaces, while PC clients
can use traditionally structured pull-down menus systems. There is also the potential
to develop clients that facilitate access from a PDA or any other appropriate device.
The interaction allowed by each interface is appropriate to the specific device. For
example, interaction through a PDA would be greatly limited as compared to an
interaction at a SmartBoard, and drawing facilities on a mouse-based PC client may
be more structured than those on the SmartBoard, in order to accommodate the
associated input mechanism. This functionality is in support of Functional
Requirement 4 (Support transitions between physical devices).

Device appropriate interfaces allow users to interact with the application through
any available or preferred hardware, and freely migrate between device types, as long
as the limitations of the hardware are accepted. Migration between tools and devices
is further supported by the segmentation of data. Segmentation facilitates data
plasticity, wherein types of data within a segment can be manipulated appropriately in
the context of a given device or application. If a segment is known to contain data of a
particular type, then it can be interpreted or formatted appropriately for any specific
device or tool. For example, if a segment is known to contain a UML diagram, then it
can be interpreted and migrated via XML into an appropriate UML-based CASE tool.

In addition to the functionality described above, a variety of additional features are
integrated into the user interface to facilitate interaction with the Software Design
Board. Unlike a regular whiteboard, a session in the SDB can be essentially
unbounded in size. To facilitate navigation, the interface to the workspace is
scrollable and zoomable. If a more structured input mechanism is desired at the
whiteboard, a floating keyboard and/or structured drawing palette can be made
available through menu options. These options can be accessed from context sensitive
and device appropriate menu systems. Finally, all functionality is available through
both context sensitive pull-down menus and pie-menus that facilitate gesture-based
commands. This allows advanced users to use the tool more effectively by bypassing
the menu structure.

5.3 Workstyle Transitions in Software Design Board

We now consider some simple scenarios that illustrate how Software Design Board
can be used to perform some common transitions between workstyles. This is not
intended as a set of instructions for performing the indicated transition, but rather as
examples of how such transitions are supported within the tool. Additionally, it is
intended to demonstrate the ease with these transitions can be performed within the
tool.
 Distribution Transitions: A group of co-located collaborators works together

around an electronic whiteboard (a co-located workstyle). They want to share their
work with a remotely located group. They draw a box around their current work in
order to define a segment, and use a simple gesture command to share that segment
with the remote group. The availability of the remote group is indicated via the
context-sensitive pie menus [14, 19] that structure the gesture. At the remote site, a
change in the entry structure of the menu system indicates the availability of a
newly shared segment. The remote group creates a local segment in their

The Software Design Board 377

workspace, and uses a similar gesture to attach their segment to that which was
newly shared with them. Synchronized copies of the original data now appear in
both group’s segments, and telepointers appear to provide a sense of awareness of
the actions of each group to the other. The two groups now collaborate in this
distributed workstyle.

 Synchronicity Transitions: A group of users interacts synchronously with data
contained in a shared segment (a synchronous workstyle). Each user performs
updates that are immediately reflected in every other user’s view of the data. They
decide to work separately so that each user may concentrate on a particular aspect
of the data. Each user detaches his/her segment from the shared session, and is left
with a local copy of the data to which asynchronous updates can be performed.
Now each user interacts with the data in their local copy (an asynchronous
workstyle).

 Device Transitions: A user is drawing a design on an electronic whiteboard. Using
the piemenu structure and gesture commands, he invokes the recognizer and
converts the freehand design to a structured drawing. He then creates a shared
segment containing the diagram on the whiteboard. He moves to his PC and starts
the Software Design Board client. Using the traditional pull-down menu structure,
he creates a segment, attaches it to the shared segment he previously created at the
whiteboard. He continues to work on that diagram from the PC, manipulating the
structured elements in a manner appropriate for mouse-based interaction.

 Context Transitions: A user maintains two different shared segments in his
Software Design Board workspace. Each segment is shared between a different
group of colleagues with whom he collaborates, and therefore each segment
maintains completely different data (each maintains a different work context).
Through the course of the day he scrolls the workspace back and forth between
those segments in order to interact with the different groups as required.

 Syntax Transitions: A group of co-located users are brainstorming and free hand
drawing a design on a whiteboard. Eventually, the drawing becomes too large and
convoluted to easily manipulate in this manner. Some elements consume a
disproportionate amount of board space; others overlap due to the freeform
development of the diagram. The designers want to move the work into a
structured drawing editor to clean up the drawing and continue work. They use a
gesture command to select all relevant drawing elements, then another gesture to
invoke the syntax recognizer. The drawing is automatically converted to discrete,
structured drawing elements such as boxes, circles and arrows. A third gesture is
used to invoke a ‘Send To…’ command, which causes the newly structured
elements to be opened within a structured drawing editor. The group now
restructures their drawing, and continues to work.

 Semantic Transitions: A group of users has completed a freehand design diagram
on a whiteboard. The users invoke the syntax recognizer to structure their drawing,
as described above. Next, they use a gesture command to reselect all drawing
elements, and another gesture to invoke the UML semantic interpreter. The
structured drawing is automatically interpreted as a simplified UML class
diagram– boxes are converted to classes, open arrows as generalizations, closed
arrows as aggregations. A third gesture is used to invoke a ‘Send To…’ command,

378 J. Wu and T.C.N Graham

which causes the newly structured elements to be opened within a UML editor for
further manipulation.

5.4 Current Status of the Implementation

The Software Design Board application is currently a functional research prototype.
Most of the functionality described in the previous sections exists, either wholly or
partially, though some core functionality remains to be implemented. Functionality
for moving, resizing and copying freehand elements still remains to be implemented,
and structured drawing functionality and other PC-based interaction techniques are
less developed. Distributed, synchronous sharing is currently limited to drawing data;
synchronous application sharing functionality is only partially implemented and not
yet functional. The functionality for implementing syntax transitions is not fully
implemented. An XML DTD has been developed to describe these recognized free-
hand diagrams, and standalone code for writing and reading these XML documents
exists. However, this code has not yet been integrated with the Software Design
Board application. Finally, only limited work has been done toward supporting
semantic transitions, i.e. applying a semantic interpretation to the syntactic structure
of the drawing described by the XML document. This work has been limited by the
limited implementation supporting syntax transitions. As the functionality evolves to
more completely support the syntax transition, so too will the functionality supporting
the semantic transition.

6 Conclusions

In this paper, we have introduced a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
important in the early stages of software development, and facilitates transitions
between them. The functional requirements for the tool evolved from workstyle
analysis of existing design tools and from results of empirical research into
collaborative software design activities.

The need to support workstyle transitions in tools for collaborative software design
stems from the fact that designers switch amongst numerous collaborative styles
throughout the course of the their work. Many factors influence the style in which
they may choose to work (their workstyle), including the task at hand, availability of
tools, distribution of collaborators, and personal preferences. These influences change
frequently, thus designers often migrate between workstyles in response to such
changes. Unfortunately, there are obstacles to such transitions. These may include
having to recreate work artifacts in the format of a new tool, interruption of the flow
of work, or physical relocation. Such obstacles may prove sufficiently burdensome
that designers choose to continue to work in a style that is inappropriate for their
current context. These obstacles exist because the variety of workstyles and workstyle
transitions in which designers engage are not well supported by most existing design
tools. Most of these tools are designed to support a single or limited set of workstyles,

The Software Design Board 379

and their architectures are generally not capable of handling the dynamic changes in
workstyle that are typical of collaborative design.

Software Design Board was developed to address some of these shortcomings and
to support designers in some of the common workstyles and transitions in workstyle
in which they frequently engage. Specifically, Software Design Board supports
designers working synchronously/asynchronously, distributed/collocated and more
generally, formally/informally. It supports the creation of syntactically bound or free-
from artifacts, can be used through a variety of physical devices, and facilitates
collaboration in multiple, concurrent contexts.

References

1. AgileAlliance, http://www.agilealliance.org
2. Bly, S., A. (1988). “A Use of Drawing Surfaces in Different Collaborative Settings”.

Conference on Computer-Supported Cooperative Work, Portland, OR.
3. Bly, S.,A. and S. Minneman (1990). "Commune: A Shared Drawing Surface." SIGOIS

Bulletin: 184-192.
4. Crowley, J., Coutaz, J., Berard, F. (2000). "Things that See." Communications of the

ACM 43(3): 54-64.
5. Damm, C. H., Hansen, K. M., Thomsen, M. (2000). “Tool Support for Object-Oriented

Cooperative Design: Gesture-Based Modelling on an Electronic Whiteboard”. Proceedings
of Conference on Human Factors and Computing Systems. The Hague, Netherlands.

6. DeMarco, T. and T. Lister (1987). Peopleware. New York, Dorset House.
7. Dewan, P. Choudary, R. (1991). “Flexible user interface coupling in collaborative

systems”. CHI ' 91, New Orleans, LA, ACM.
8. Diaper, D. (1989) Task analysis for human computer interaction, Ellis Horwood,.
9. Fonseca, M.,J., Pimentel, C., and Jorge, J., A. (2002). “CALI: An Online Scribble

Recognizer for Calligraphic Interfaces”, Proceedings of the 2002 AAAI Spring
Symposium - Sketch Understanding. Palo Alto, USA. pp51-58

10. Francik, E., Rudman, S. E., Cooper, D., and Levine, S. (1991). Putting innovation to work:
adoption strategies for multimedia communication systems. Communications of the ACM,
34(12), pp. 52-64.

11. Greenberg, S. and R. Bohnet (1991). “GroupSketch: A Multi-user Sketchpad for
Geographically Distributed Small Groups”. Proceedings of Graphics Interface, pp 207-
215.

12. Grundy, J. C., Mugridge, W.B, Hosking, J.G., Apperley, M. (1998). “Tool Integration,
Collaboration and User Interaction Issues in Component-based Software Architectures”.
TOOLS '98, Melbourne, Australia, IEEE.

13. Hammond, T. and R. C. Davis (2002). “Tahuiti: A Geometrical Sketch Recognition
System for UML Class Diagrams”. Sketch Symposium, Stanford University, Palo Alto,
CA.

14. Hopkins, D. (1991) “The Design and Implementation of Pie Menus”, Dr. Dobb’s Journal,
CMP Media. December 1991.

15. Ideogramic – IdeogramicUML, http://www.ideogramic.com
16. Ishii, H. and M. Kobayashi (1992). “ClearBoard: A seamless medium for shared drawing

and conversation with eye contact”. Conference on Human Factors in Computing Systems,
Monterey, CA, ACM.

17. Jabarin, B., and Graham, T.C.N. (2003) “Architectures for Widget-Level Plasticity”,
Proceedings of DSV-IS 2003 Portugal, June 11-13. pp. 124-238

18. Jones, T. C. (1986). Programming Productivity. New York, McGraw-Hill.

380 J. Wu and T.C.N Graham

19. Kurtenbach, G. and Buxton, W. (1991) “Issues in Combining Marking and Direct
Manipulation Techniques” In Proceedings of ACM UIST'91. pp. 137--144.

20. Landay, J. A. and B. A. Myers (1995). “Interactive Sketching for Early Stages of Design”.
CHI '95, Denver, CO, ACM Press.

21. Lank, E., Thorley, J.S., Chen, S.J. (2000). “An Interactive System for Recognizing Hand
Drawn UML Diagrams”. CASCON2000, Toronto, ON.

22. Malone, T. W. and K. Crowston (1990). “What is coordination theory and how can it help
design cooperative work systems?”. Proceedings of Conference on Computer-Supported
Cooperative Work. ACM Press. pp. 357-370

23. Microsoft Corp. – Netmeeting, http://www.microsoft.com
24. Mynatt, E. D., Igarashi, T., Edwards, W.K. LaMarca, A. (1999). “Flatland : New

Dimensions in Office Whiteboards”. CHI '99, Pittsburgh, PA, ACM.
25. Pederson, E. R., McCall, K., Moran, T.P., Halasz, F. G. (1993). “Tivoli: An Electronic

Whiteboard for Informal Workgroup Meetings”. INTERCHI '93. Amsterdam,
Netherlands. April.

26. Rational Corp. – Rose, http://www.rational.com
27. Seaman, C.B. and Basili, V.R. (1997) “Communication and Organization in Software

Development: An Empirical Study”. IBM Systems Journal 36(4).
28. SMART Technologies, Inc. – SMARTBoard, http://www.smarttech.com
29. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., and Tatar, D. (1987) “WYSIWIS

revised: early experiences with multiuser interfaces”, ACM Transactions on Office
Information Systems, 5(2), pp.147-167

30. Streitz, N. A., J. Geißler, Haake, J. M., Hol, J. (1994). “DOLPHIN: integrated meeting
support across local and remote desktop environments and LiveBoards”. Conference on
Computer Supported Cooperative Work, Chapel Hill. NC.

31. Tang, J., C. (1991). "Findings from Observational Studies of Collaborative Work."
International Journal of Man-Machine Studies. 34(2), pp. 143-160

32. Tang, J. C. and S. Minneman (1991). “VideoWhiteboard: Video Shadows to Support
Remote Collaboration”. Conference on Human Factors and Computing Systems, New
Orleans, LA.

33. Thevenin, D., and Coutaz, J., (1999). “Plasticity of User Interfaces: Framework and
Research Agenda” Proceedings of Interact ’99 Edinburgh, Scotland. pp 110-117.

34. Wang, W., Dorohonceanu, B., Marsic, I. (1999). “Design of the DISCIPLE Synchronous
Collaboration Framework”. Internet, Multimedia Systems and Applications, Nassau,
Bahamas, IASTED Press.

35. Wong, Y.Y. (1992) “Rough and ready prototypes: Lessons from graphic design”. Short
Talks Proceedings of CHI '92: Human Factors in Computing Systems, pp. 83-84,
Monterey, CA,

36. Wu, J., Graham, T.C.N, Everitt, K., Blostein, D. and Lank, E. (2002) “Modeling Style of
Work as an Aid to the Design and Evaluation of Interactive Systems”. Proceedings of
CADUI’02. Valenciennes, France.

37. Wu, J., Graham, T.C.N., Smith, P. (2003) “A Study of Collaboration in Software Design”
ISESE 2003, Rome, IT. Sept 29-Oct 1.

38. Wu, J. (2003) “Tools for Collaborative Software Design” Queen’s University, School of
Computing. Technical Report 2003-462, Queen's University, Kingston, Ontario, Canada,
January 2003.

The Software Design Board 381

Discussion

[Philippe Palanque] As you use the work style axes as a mean for evaluating the
adequacy between tool and a work style do you not need more detailed information
for each axes?

[Nick Graham] All the axes are continuous and we use them more as an
informational tool - we worked on making the axes more precise but we did
not find it to be more useful.

[Jürgen Ziegler?] Are the dimensions independent or are there interrelationships
between eg. modifiability and degree of semantic correctness?

[Nick Graham] I think we can come up with examples for each pair of axes
where you could be at either extreme and if you think of each pair of axes
that the extremes are presented as cross products of all four possible
positions, then we can come up with examples of all four positions for all the
axis pairs, so we are quite confident that axes are orthogonal.

[Grigori Evreinov] Did you think of using parallel coordinate systems?

[Nick Graham] No, that would be interesting; do you think that would be
better?

[Grigori Evreinov] Yes, we have Information Visualization Research Group in our
Department (http://www.cs.uta.fi/~hs/iv/) and the parallel coordinates system is
presented on their site, so you can try it! or ask about the author Harry Siirtola

[Nick Graham] That would be interesting!

[Jörg Roth] Your work style model reminds me of the Denver model from 1996 (they
have 2 diagrams with 5 axes each instead of your 8)?

[Nick Graham] There are similar in the sense that they are both related to
groupware and presented as "quiviant diagrams". Beyond that the axes are
actually very different to my recollection! I have compared to the Denver
model, but to give you a proper answer I would have to look at the Denver
model again, because I cannot remember the axes exactly!

[Michael Harrison] One of the interesting things about collaborative work is that, just
like we have had this conference I will go away to a room and do some work and
maybe have some ideas and produce some notes. Next time we have a collaborative
meeting I may want to fold that back in to the collaboration and I was not sure how
that kind of continuity could be achieved. This characterises different collaborative
models whereas that is not essentially a collaboration model, but it is essential to the
process of collaboration.

[Nick Graham] That would be considered a tool transition, so one tool is pen
and paper and the other your designed word software. We are very interested
in that, so one approach is to say it would be wonderful if you had electronic
paper that you had been scrip ling on and that could be imported right in to
the tool, a poor mans approach to that would be to scan it, a really poor mans
approach would be to sit and type it in. So those are examples of how

382 J. Wu and T.C.N Graham

transitions can be easy or hard. The whole goal is certainly to find ways of
making the transition easier so that people are more likely to do them.

[Hong-Mei Chen, University of Hawaii] The Work style model you presented here
seems to be domain-specific to software design in your empirical case studies and not
applicable to other kind of collaborative work. For instance, some brain storming
tasks (as studied in Group Decision Support Systems - GDSS) consider important
factors such as social cues and anonymity to be important.

[Nick Graham] I agree with you that there are many other axes that we could
put in and we have actually studied it in IFIP WG 2.7/13.4 and discussed the
kind of transitions that would come up, e.g. with respect to privacy. An
example could be a situation where you start out in a context where privacy
is not important to you and the all of a sudden you are asked to enter your
credit card information and privacy becomes very important to you. This just
to say, that these are also important issues and we do not claim to have
solved every issue in the world. We have used this model in other domain,
but will not make any claims that this is applicable to any domain and maybe
we will come back next year with the 40 dimensions version!

[Rick Kazman] How do you deal with multiple updates to a single document when
people work asynchronously but they want to merge their work?

[Nick Graham] We do not support merging in general since it is a difficult
problem, but we do support merging of the whiteboard freehand drawings.
Merging MS Word documents alone is big problem in it self!

[Rick Kazman] Are you aware of any general solution to the multiple merge
problems?

[Nick Graham] No, all the solutions I have seen are point solutions often
commercial, such as for MS Word, but no good general solutions.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 383-397, 2005.
 IFIP International Federation for Information Processing 2005

Supporting Group Awareness
in Distributed Software Development

Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Department of Computer Science, University of Saskatchewan
Computer Science Department, University of Saskatchewan

57 Campus Drive, Saskatoon, SK
Canada, S7N 5A9

gutwin,kas,dnp972,rpenner @usask.ca

Abstract. Collaborative software development presents a variety of
coordination and communication problems, particularly when teams are
geographically distributed. One reason for these problems is the difficulty of
staying aware of others – keeping track of information about who is working on
the project, who is active, and what tasks people have been working on. Current
software development environments do not show much information about
people, and developers often must use text-based tools to determine what is
happening in the group. We have built a system that assists distributed
developers in maintaining awareness of others. ProjectWatcher observes fine-
grained user edits and presents that information visually on a representation of a
project’s artifacts. The system displays general awareness information and also
provides a resource for more detailed questions about others’ activities.

1. Introduction

Software projects are most often carried out in a collaborative fashion. The
complexities of software and the interdependencies between modules mean that these
projects present collaborators with several coordination and communication problems.
When development teams are geographically distributed, these problems often
become much more serious [2,10,11,14]. Even though projects are often organized to
try and make modules independent of one another, dependencies cannot be totally
removed [14]. As a result, situations can arise where team members duplicate work,
overwrite changes, make incorrect assumptions about another person’s intentions, or
write code that adversely affects another part of the project [10].

These problems occur because of a lack of awareness about what is happening in
other parts of the project. Most development tools and environments do not make it
easy to maintain awareness of others’ activities [10]. Current tools are focused around
the artifacts of collaboration rather than people’s activities (e.g., the files in a
repository rather than the actions people have taken with them). An artifact-based
approach is clearly necessary for certain types of work, but without better information
about people, smooth collaboration becomes difficult. Awareness is a design concept
that holds promise for significantly improving the usability of collaborative software
development tools.

384 C. Gutwin et al.

We have built a system called ProjectWatcher that provides people with awareness
information about others on the development team. The system is designed around
our observations of the awareness requirements in several distributed software
projects. We found that developers first maintain a general awareness of who is who
and who is doing what on a project; and second, they actively look for information
about people when they are going to work more closely with them. However,
developers often have to use text-based sources to get that information.

ProjectWatcher observes and records fine-grained information about user edits and
provides visualizations of who is active on a project, what artifacts they have been
working on, and where in the project they have been working. This information about
others’ activities can help to improve coordination between developers and reduce
some of the problems seen in distributed development.

In this paper, we introduce ProjectWatcher and describe its design and
implementation. We first give an overview of the issues affecting collaboration in
software development, and then discuss group awareness in more detail and the
awareness requirements of a distributed development project. We then describe the
two main parts of ProjectWatcher: a fact mining component that gathers developer
activity information, and a visualization component that overlays activity data onto a
representation of project artifacts.

2. Background

Although collaboration is an important research area of software engineering – where
teams are common and where good communication and coordination are essential for
success – little work has been done on group awareness in software development.
Similarly, although awareness has received attention in the Computer-Supported
Cooperative Work (CSCW) community, this knowledge has not been considered
extensively in development settings. We believe that awareness is a design concept
that holds promise for significantly improving the usability of collaborative software
development tools. In the next sections, we review issues of collaboration in
distributed software development, the basics of group awareness, and the awareness
requirements that we have determined from observations of open source projects.

2.1 Collaboration Issues in Software Development

Collaboration support has always been a part of distributed development – teams have
long used version control, email, chat groups, code reviews, and internal
documentation to coordinate activities and distribute information – but these solutions
generally either represent the project at a very coarse granularity (e.g., CVS), require
considerable time and effort (e.g., reading documentation), or depend on people’s
current availability (e.g., IRC).

Researchers in software engineering and CSCW have found a number of problems
that still occur in group projects and distributed software development. They found
that it is difficult to:

Supporting Group Awareness in Distributed Software Development 385

 determine when two people are making changes to the same artifacts [14];
 communicate with others across timezones and work schedules [11];
 find partners for closer collaboration or assistance on particular issues [20];
 determine who has expertise or knowledge about the different parts of the project

[24];
 benefit from the opportunistic and unplanned contact that occurs when

developers are co-located, since there is little visibility of others’ activities [10].
As Herbsleb and Grinter [10] state, lack of awareness – “the inability to share the

same environment and to see what is happening at the other site” (p. 67) is one of the
major factors in these problems.

2.2 Group Awareness

In many group work situations, awareness of others provides information that is
critical for smooth and effective collaboration. Group awareness is the understanding
of who is working with you, what they are doing, and how your own actions interact
with theirs [5]. Group awareness is useful for coordinating actions, managing
coupling, discussing tasks, anticipating others’ actions, and finding help [8]. The
complexity and interdependency of software systems suggests that group awareness
should be necessary for collaborative software development. Knowledge of developer
activities, both past and present, has obvious value for project management, but
developers also use this information for many other purposes – purposes that assist
the overall cohesion and effectiveness of the team. For example, knowing the specific
files and objects that another person has been working on can give a good indication
of their higher-level tasks and intentions; knowing who has worked most often or
most recently on a particular piece of code indicates who to talk to before starting
further changes; and knowing who is currently active can provide opportunities for
real-time assistance and collaboration.

In co-located situations, three mechanisms help people to maintain awareness:
explicit communication, where people tell each other about their activities;
consequential communication [22], in which watching another person work provides
information as to their activities and plans; and feedthrough [4], where observation of
changes to project artifacts indicates who has been doing what. Of these mechanisms,
explicit communication is the most flexible, and previous research has looked at the
ways that groups communicate over distance, through email, text chat, and instant
messaging (e.g., [18,23]). However, since intentional communication of awareness
information also requires the most additional effort, many awareness systems attempt
to support implicit mechanisms as well as communication. General approaches
include providing visible embodiments of participants and visual representations of
actions that allow people to watch each other work, and overview visualizations of
artifacts that show feedthrough information.

Although group awareness is often taken for granted in face-to-face work, it is
difficult to maintain in distributed settings. This is particularly true in software
development: other than access to the shared code repository, development
environments and tools provide almost no information about people on the project.
Although communication tools such as email lists and chat systems help to keep

386 C. Gutwin et al.

people informed on some projects, these text-based awareness mechanisms require
considerable effort, and are not well integrated with information about the artifacts of
the project. As a result, coordination problems are common in distributed settings, and
collaboration suffers. A few research systems do show awareness information (e.g.,
TUKAN [21] or Augur [7]), but it is not clear that these tools really provide the
awareness information that is needed by developers. As discussed in the next section,
we based our tools and techniques on findings from a study of three distributed open-
source projects.

3. Awareness Requirements in Distributed Development

Open-source software development projects are a good source of information about
distributed development, since they are almost always collaborative and widely
dispersed (in many cases, developers never meet face-to-face). To find out what the
awareness requirements are for these long-running real-world projects, we
interviewed several developers, read project communication, and looked at project
artifacts from three open source projects [9]. We found that distributed developers do
need to maintain awareness of one another, and that they maintain both a general
awareness of the entire team and more detailed knowledge of people that they plan to
work with. However, developers maintain their awareness primarily through text-
based communication – particularly mailing lists and chat systems.

The three open source projects we looked at are NetBSD (www.netbsd.org),
Apache httpd (www.apache.org), and Subversion (www.tigris.org/subversion). We
chose these projects because they are distributed, they are at least medium-sized in
terms of both the code and the development team, and they all produce a product that
is widely used, indicating that they have successfully managed to coordinate
development.

An initial issue that we looked at was whether distributed projects can successfully
isolate different software modules from one another such that awareness and
coordination requirements become insignificant. There are two ways that
dependencies can be reduced – by reducing the number of developers, or by
partitioning the code. However, in the three projects we looked at, neither of these
factors removed awareness requirements. There were at least fourteen core developers
who contributed regularly to each project, and although there was general
understanding that people work in ‘home’ areas, there were no official sanctions that
prevented any developer from contributing to any part of the code. On Apache and
Subversion in particular, development of a particular module was almost always
spread across several developers.

The next issue studied was what types of awareness the developers maintained. We
found two types: general awareness and more specific knowledge. First, developers
maintain a broad awareness of who are the main people working on their project, and
what their areas of expertise are. This information came from three sources: the
project mailing list, where people can see who posts and what the topics of discussion
are; the chat server, which provides similar information but in real time; and the CVS
commits (sent out by email), which allowed developers to stay up-to-date both on
changes to the project and the activities of different people. Second, when a developer

Supporting Group Awareness in Distributed Software Development 387

wishes to do work in a particular area, they must gain more detailed knowledge about
who are the people with experience in that part of the code. We found that people use
a variety of sources to gather this information, including project documentation, the
records in the source code repository, bug tracking systems, and other people. Further
details on this study can be found in [9].

Even though these open-source projects do successfully manage their coordination,
our interviews also identified some problems with the way awareness is maintained.
Two problems that we consider further in this paper involve watching CVS commits,
and maintaining overall awareness about project members and their activities.
Although the ‘CVS-commit’ mailing list provides the only information that is actually
based on the project artifacts, several developers said that they do not follow them
because they are too time-consuming to read. Developers also suggested that some of
the information sources they use often go out of date, and that understanding the
relationships between people and activities was often difficult. One developer stated
that new members of the project in particular could benefit from tools that provided
more information than what was currently available.

4. Project Watcher

We have developed an awareness system called ProjectWatcher to address some of
the awareness issues that we have seen in distributed development projects.
ProjectWatcher gathers information about project artifacts and developer’s actions
with those artifacts, and visualizes this awareness information either as a stand-alone
tool or as a plugin inside the Eclipse IDE. ProjectWatcher consists of two main parts
– the mining component, and the awareness visualizations.

4.1 Mining Component

The mining component analyzes a project’s source code to produce facts for use by
the ProjectWatcher visualization displays. To gather developer activity information at
a finer grain size than repository commits, a shadow CVS repository is maintained
(see Figure 1). User edits are auto-committed to the shadow repository as developers
edit source code files (e.g., on every save of the file). With each auto-commit a new
version of the file is stored in the shadow repository. The mining component analyzes
the auto-committed versions against each other and the versions in the shared CVS
repository to obtain user edit information that can be understood in terms of the
project’s software architecture.

The mining component is composed of two fact extractors: the software
architecture fact extractor and the user edit fact extractor. The software architecture
fact extractor is run against the software repository to obtain entity/relationship facts.
Entity facts extracted include: package, class and method facts. Relationship facts
extracted include: calls, contains, imports, implements and extends relationships. The
software architecture facts are used by the visualization system to present the software
structure. The user edit fact extractor is run against the shadow repository to obtain

388 C. Gutwin et al.

information about the methods a developer is changing. The user edit facts are used
by the visualization to present developer activity information.

Fig. 1: User edit fact extraction.

The software architecture fact extractor is implemented in two stages and may
either be run on the shadow repository or on the shared software repository (see
Figure 2). The first stage, the base fact extractor uniquely names the entities in the
source code and extracts the facts of interest. This process is accomplished with a
TXL [15] program using syntactic pattern matching [3]. The second stage, the
reference analyzer, resolves references between software architecture entities.

Fig. 2: Software architecture fact extraction from Java projects

Supporting Group Awareness in Distributed Software Development 389

The reference analyzer extracts scope facts from the project source code and
integrates them with the facts extracted in stage one. Next, the method call facts are
analyzed to determine which package and class the method that was called belongs to.
This process involves resolving the types of variables and return types of methods that
are passed as arguments to method calls. The types of all the arguments are identified.
Then scope, package, class, and method facts are analyzed to determine which
package and class the method belongs to. To resolve calls to the Java library, the full
Java API is first processed by the ProjectWatcher mining component (this is only
done once for all projects).

The user edit fact extractor (Figure 3) is implemented in three stages and is run
against two versions of the project source code. The first stage splits the files into
separate class and method snippets. The second stage compares and matches revisions
of the code snippets. Initially, methods are matched based on their names. If a method
match is not found at the method name level, methods are compared based on the
percentage of lines of code that match between all methods. If a method’s name is
changed, a match based on percentage of similarity is still found between the two
versions. When no match is found for a method from an earlier revision, the method is
identified as having been added. When no match is found for a method from a later
revision, the method is identified as having been removed. Facts about method
additions and method removals are stored in the user edit factbase. Once the methods
from each revision have been matched, a line diff is performed on each pair of
methods. The diff algorithm gives us information about what lines have been added
and removed from a method, and this information is stored in the user edit factbase.

Fig. 3: User edit fact extraction.

390 C. Gutwin et al.

The complete factbase contains uniquely identified facts indicating all packages,
classes, methods, variables, and relationships for a Java project and all user edits.
These facts are used by the visualization component to show activity and proximity
information. The time and space needed for fact extraction and factbase storage
depends on the size of the code; for example, the Java Development Kit 1.4.1 contains
202 package facts, 5,530 class facts, 47,962 method facts, and 106,926 method call
facts

4.2 Visualization of Activity and Commits

ProjectWatcher’s activity awareness display visualizes team members’ past and
current activities on project artifacts (see Figures 4 and 5). The goals of this display
are:
 to give collaborators an overview of who works on the project
 to provide a general sense of who works in what areas
 to allow changes (i.e., commits) to be tracked without much effort
 to provide more detail when the user wants to look more closely.

The display uses the ideas of edit wear, interaction histories, and overviews. Edit
wear is a concept introduced by Hill and colleagues [13]. Their overall motivation is
the question of how computation can be used to improve “the reflective conversation
with work materials” (p. 3), and the observation that most computational artifacts do
not show any traces of the ways that they have been used, unlike objects in the real
world. Starting with this idea of ‘object wear,’ their research proposes an
‘informational physics’ in which the visual appearance of an object arises not from
everyday physical laws, but from informational rules that are semantically useful.
Their notion of physics has objects explicitly show different aspects of their use over
time – that is, their interaction history:

The basic idea is to maintain and exploit object-centered interaction histories:
record on computational objects…the events that comprise their use…and
display useful graphical abstractions of the accrued histories as part of the
objects themselves.” ([13], p. 3)

Hill and colleagues were primarily interested in an individual’s reflection on their
use of work artifacts, but there is obvious value for group awareness as well. In
ProjectWatcher, the artifacts are the files in a CVS repository (shadow or regular),
and the interaction history is a record of all of the actions that a person undertakes
with them (gathered unobtrusively by the fact extractor as people carry out their
normal tasks).

We take these interaction histories and visualize them on an overview
representation of the entire project. Overviews provide a compact display of all the
project artifacts, and allow information to be gathered at a glance. In addition, the
overview representation can be overlaid with visual information about the interaction
history or about changes to the artifacts. Although some tools such as CVS front-ends
do limited visualization of the source tree (e.g., by colour), our goal here is to collect
much more information about interaction, and provide richer visualizations that will
allow team members to quickly gather awareness information.

Supporting Group Awareness in Distributed Software Development 391

Fig. 4. Project overviews showing directories (grey bars) and files (coloured blocks) for a
medium-sized game project with 322 files. Three types of filters are shown: at left, block colour
indicates who changed the file most recently; at middle, colour shows who has changed the file
most often; at right, grey level indicates the amount of time since last change. In each block, the
bar graph shows the edit history since the start of the project. Developer colours are shown in a
menu. Note that normally only one window would be used, with the filter changed through a
menu selection.

ProjectWatcher uses the extracted fact base to create a visual model of what each
developer is doing in the project space. Project artifacts are shown in a simple stacked
fashion that displays packages, files, classes, and methods. We chose this method of
organization because it is much more compact than other approaches, such as class
diagrams or dependency graphs. With the stacked representation, even a small
overview can completely display projects with up to several hundred files (e.g.,
Figure 4 shows 322 files); in larger projects, developers can collapse particular
packages to save space. The drawback with the stack is that there is little contextual
information available to help users determine which artifact is which. To try and
reduce this problem, artifacts are always stacked by creation date, so that their
location in the overview is fixed, and can over time be learned by the user. We are

392 C. Gutwin et al.

also experimenting with allowing users to reorganize the display, so that they can
arrange and group the artifacts in ways that are more meaningful to them.

On this basic overview representation, we overlay awareness and change
information. First, each developer is assigned a unique colour, and this colour can be
added to the blocks in the overview based on a set of filters. Common filters that
involve developer information include who has modified artifacts most recently, and
who has modified them most often. Other filters exist as well, such as one that shows
time since last change (see Figure 5). Second, we show a summary of the activity
history for each artifact with a small bar graph drawn inside the object’s rectangle;
bars represent amount of change to the class since its creation. More information
about an artifact can be obtained by holding the cursor over a rectangle: for example,
the name of the class and a more detailed bar graph.

Fig. 5. ProjectWatcher as an Eclipse IDE plugin (www.eclipse.org), showing highlights
(yellow borders on blocks) to indicate others’ recent changes, and popup window to show more
detail about a particular file.

Change information can be shown in addition to information about developers. The
system highlight artifacts (using coloured borders) if they have changed recently –
this provides users with dynamic information about commits to the project. When a
change occurs to the CVS repository, the changed files are highlighted in the
overview representation. More details about the change can be seen using the popup

Supporting Group Awareness in Distributed Software Development 393

detail window, and further information (such as the difference between the two
versions) can be seen through a context menu.

The overview displays help developers to answer a variety of questions about the
project and about the activities of their collaborators. For example, it can be seen that
the developers timriker (light blue) and davidt (red) are currently active (since they
have each been the last to touch several files), and are core developers on the project
(since they are both the most frequent committer for many files). We can also see that
developers riq (green) and nsayer (dark blue) are each likely responsible for one main
module in the project, since they are the most frequent for all the files in a particular
directory. Two other people, dbw192 (yellow) and dbrosius (brown) are neither recent
or frequent committers, since neither filter shows any files in their colour. Finally, we
can see from the ‘age’ filter (Figure 4, right) that most of the project has recently been
changed, since most of the blocks are white or light grey.

The highlights (see Figure 5) provide an analogue to the CVS-commits mailing
list, but with considerably less effort. As can be seen in the figure, there are six files
that have been changed since the local user last updated files from the repository. It is
easy to determine how much change is occurring, and in general where it is
happening. By holding the mouse cursor over any of these blocks, the developer, can
get more information about what file has been changed, who committed the most
recent change, and the number of lines added and deleted in the change (the ‘14/4’ in
the popup indicates that 14 lines were added, and 4 deleted).

5. Comparison to Related Work

A number of software engineering tools provide some degree of information about
other members of the team (such as their identities or their assigned tasks), or provide
facilities for team communication (e.g., [2,6,19]). However, only a few systems
combine information about people’s activities with representations of the project
artifacts. Two that do this are Augur [7] and TUKAN [20,21].

TUKAN is one of the first systems to explicitly address the question of awareness
in software development. The basic representation used in TUKAN is a Smalltalk
class browser, onto which awareness information is overlaid. In particular, the system
shows the distance of other developers in ‘software space,’ using a software structure
graph as the basis for calculating proximity. The main difference in our approach with
ProjectWatcher is in the use of an overview; where TUKAN presents relevant
information about others who may be encroaching on a developer’s current location,
ProjectWatcher provides a general overview of the entire project.

Augur is a system similar to Ball and Eick’s SeeSoft [1], that presents line-based
visualizations of source code along with other visual representations of the project.
The goal of Augur is to unify information about project activities with information
about project artifacts; the system is designed to support both ongoing awareness and
investigation into the details of project activity. ProjectWatcher also uses the ideas of
edit/read wear and combining activity and artifact information; the main difference
between the two systems is that Augur is a large-scale system with many views and a
highly detailed representation of the project, whereas ProjectWatcher’s visualization
is designed only to support the two awareness questions seen in our work with

394 C. Gutwin et al.

existing projects (“who is who in general” and “who works in this area of the code”).
In addition, ProjectWatcher is based on a much finer temporal granularity of activity
than is Augur, which uses repository commits as its source of activity information.
We see ProjectWatcher as more suited to day-to-day activities on a collaborative
project, and Augur to specific investigations where developers wish to explore the
history of the project in more detail.

6. Future Research

Our future plans for ProjectWatcher involve improvements and new directions in both
the mining and the visualization components. The current version of the system
primarily addresses those awareness issues that we saw in distributed projects, but the
basic tools and approaches can be used for a variety of additional purposes.

First, we currently visualize source code that is in the process of being edited, and
therefore the source code may be inconsistent, incomplete and frequently updated. We
are investigating techniques for improving the robustness and performance of the fact
extraction process, and techniques for visualizing partial information given these
circumstances. Our system also only records user edits to the method level. We plan
to move towards even finer grained awareness so that we can handle concurrent edits
in some situations.

Second, the capturing and recording of developers' activities supports new software
repository mining research in addition to supporting awareness. Developers normally
change a local copy of the software under development, and periodically synchronize
their changes with the shared software repository. Unfortunately, the developer’s
local interactions with the source code are not recorded in the shared software
repository. With our finer-grained approach, the local interaction history of the
developer is recorded and is available to be mined. Example software mining research
directions include:
 Discovery of refactoring patterns. Analysing local interaction histories may be

useful for identifying novel refactoring patterns and coordinating refactorings
that affect other team members.

 Discovery of browsing patterns. Local interaction history includes the developer's
searching, browsing and file access activities. Analysing this browsing
interaction may be useful in supporting a developer in locating people or code
exemplars.

 Discovery of expertise. Since the factbase contains facts from the Java API, we
can determine what parts of that API each developer has used, and how often. It
can now be possible to determine who has used a particular Java widget or
structure frequently, and to build that knowledge into the development
environment.

We also plan to refine and expand the visualization component. Short-term work
will involve testing the representations and filters to determine how the information
can be best presented to real developers. Longer range plans involve extensions to the
basic idea of integrating information about activities with information about project
artifacts. For example, we plan to extend our artifact collection to include entities
other than those in source code. Many other project artifacts exist, including

Supporting Group Awareness in Distributed Software Development 395

communication logs, bug reports and task lists. We hope to establish additional facts
to model these artifacts and to use the new artifacts and their relationships in the
awareness visualizations. We can also extend our use of the interaction histories to
other areas. As discussed above, recording developers' interaction history and
extracting method call facts from the source code provides us with basic API usage
information. We can present this information in the IDE to provide awareness of
technology expertise.

Finally, we plan to extend the range of awareness information that can be seen in
the visualizations. As mentioned above, displaying information about refactoring,
browsing, and expertise may be useful to developers in a distributed project. Other
possibilities include questions of proximity – “who is working near to me?” in terms
of the structures and dependencies of the software system under development, and
questions of scope and effect – “how many people will I affect if I change this
module?” Proximity is an important concept in software development because
developers who near to one another (in code terms) form an implicit sub-team whose
concerns are similar and whose interactions are more closely coupled [20]. Proximity
groups are not defined in advance and change membership as developers move from
task to task; therefore, it is often very difficult to determine who is currently in the
group. We will address this problem by extending the ProjectWatcher visualizations
to make it easier to see proximity-based groups.

7. Conclusions

We have presented a system to address some of the awareness problems experienced
in distributed software development projects. ProjectWatcher contains two main
parts: a mining component and a visualization system. The system keeps track of fine-
grained user activities through the use of a shadow repository, and records those
actions in relation to the artifact-based dependencies extracted from source code.
Second, visualizations represent this information for developers to see and interact
with. The visualizations present a project overview, overlaid with visual information
about people’s activities. Although our prototypes have limitations in terms of project
size, they can provide developers with much-needed information about who is
working on the project, what they are doing and how the project is changing over
time.

Acknowledgements

The authors would like to thank IBM Corporation for supporting this research.

396 C. Gutwin et al.

References

1. Ball, T., and Eick, S. Software visualization in the large. IEEE Computer, Vol 29, No 4,
1996.

2. Chu-Caroll, M., and Sprenkle, S. Coven: Brewing better collaboration through software
configuration management. Proc FSE-8, 2000.

3. Cordy, J., Dean, T., Malton, A., and Schneider, K., Software Engineering by Source
Transformation - Experience with TXL, Proc. SCAM'01 - IEEE 1st International Workshop
on Source Code Analysis and Manipulation, 168-178, 2001.

4. Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-Computer Interaction, Prentice Hall,
1993.

5. Dourish, P., and Bellotti, V., Awareness and Coordination in Shared Workspaces, Proc.
ACM CSCW 1992, 107-114.

6. Elliott, M., and Scacchi, W., Free software developers as an occupational community:
resolving conflicts and fostering collaboration, Proc. ACM GROUP 2003, 21-30.

7. Froehlich, J. and Dourish, P., Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams. To appear, Proc. ICSE 2004.

8. Gutwin, C. and Greenberg, S. A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Journal of Computer-Supported Cooperative Work, Issue 3-4,
2002, 411-446.

9. Gutwin, C., Penner, R., and Schneider, K., Group Awareness in Distributed Software
Development, to appear, Proceedings of ACM CSCW 2004, Chicago, 2004.

10. Herbsleb, J., and Grinter, R., Architectures, coordination, and distance: Conway’s law and
beyond. IEEE Software, 1999.

11. Herbsleb, J., Grinter, R., and Perry, D., The geography of coordination: dealing with
distance in R&D work. Proc. ACM SIGGROUP conference on supporting group work,
1999.

12. Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R., Distance, Dependencies, and Delay
in a Global Collaboration, Proc. ACM CSCW 2000, 319-328.

13. Hill, W.C., Hollan, J.D., McCandless, J., and Wroblewski, D. Edit wear and read wear.
Proc. ACM CHI 1992, 3-9.

14. Kraut, R., and Streeter, L., Coordination in software development. CACM, 1995.
15. Malton, A., Schneider, K., Cordy, J., Dean, T., Cousineau, D., and Reynolds, J., Processing

Software Source Text in Automated Design Recovery and Transformation. Proc. 9th
International Workshop on Program Comprehension, 127-134, 2001.

16. McDonald, D., and Ackerman, M., Just Talk to Me: A Field Study of Expertise Location
Finding and Sustaining Relationships, Proc. ACM CSCW 1998, 315-324.

17. Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM ToSEM, 11, 3, 2002, 309-346.

18. Monk, A., and Watts, L., Peripheral Participants in Mediated Communication, Proc. ACM
CHI 1998, v.2, 285-286.

19. Raymond, E., The Cathedral and the Bazaar, O’Reilly, 2001.
20. Schummer, T., Lost and found in software space. Proc 34th HICSS, 2001.
21. Schummer, T., and Schummer, J., TUKAN: A team environment for software

implementation. Proc. OOPSLA 1999.
22. Segal, L., Designing Team Workstations: The Choreography of Teamwork, in Local

Applications of the Ecological Approach to Human-Machine Systems, P. Hancock, J. Flach,
J. Caird and K. Vicente ed., Erlbaum, 1995, 392-415.

23. Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal Workplace Communication:
What is It Like and How Might We Support It?, Proc. ACM CHI 1994, 131-137.

24. B. Zimmermann and A. M. Selvin. A framework for assessing group memory approaches
for software design projects. Proc. Conference on Designing interactive systems. 1997.

Supporting Group Awareness in Distributed Software Development 397

Discussion

[Bonnie E. John] You chose no to look at video or IM Buddy lists, is that because
prior research suggests that that is not where the action is, or was it easier not to do
that, or what?

[Kevin Schneider] We were interested in the software artefacts and what we
could get from that! Other people in the CSCW field are working on other
aspects such as the ones you mention. The field does not really know where
the bang for the buck is.

[Bonnie John] You mentioned scalability! How big does it scale and do you have
ideas of how you could chunk or aggregate to allow you to scale further? Are we
talking about 10 person projects with 10,000 lines of code or a 100 person project
with 1,000,000 lines of code?

[Kevin Schneider] It is a big issue! I think the visualisation might not scale
and that is why we are trying to think of other metaphors! Currently 10,000
to 100,000 would probably be the limit! Currently we use relatively little
screen space and the projects we have looked at does not seem to need more
than that! Other studies have shown that even large projects such as Linux
tends to be organised around specific parts of the code and that might help
solve the scalability problem you mention! Maybe it is software architecture
that will have to solve that problem!

[Peter Forbrig] I like your tool very much. What about the software developers? Did
they like to be tracked in this way?

[Kevin Schneider] Because we were looking at open source projects there
was no problem with privacy. Their community is willing to publish all
activities. We can combine our approach with techniques to achieve privacy,
but we did not look at it up to now.

[Bonnie John] Are real people using it and would they hate you if you took it away
from them?

[Kevin Schneider] Only internal people are using it, and we do not know if
they would hate us if we took it away!

Author Index

Adams, R.J. 1

Balme, L. 306
Bass, L. 1
Bastide, R. 179
Blandford, A. 253
Bleul, S. 221
Borkowski, S. 228
Bosch, J. 38
Bouillon, L. 200
Bouwhuis, D.G. 20
Brinkman, W.-P. 20

Calvary, G. 306
Campos, P.F. 146
Castells, P. 164
Clerckx, T. 77
Coninx, K. 77
Connell, I. 253
Correani, F. 346
Coutaz, J. 306
Crabtree, A. 112
Crowley, J.L. 228

Dâassi, O. 306
Demeure, A. 306
Diniz Junqueira Barbosa, S. 271
Dittmar, A. 59, 96
Dobson, S. 292
Dragicevic, P. 179

Eichholz, C. 96
Evreinov, G. 245
Evreinova, T. 245

Fernández-Caballero, A. 289
Folmer, E. 38
Forbrig, P. 59, 96

Gilroy, S.W. 325
Gonçalves, D. 129
González, P. 289
Graham, T.C.N. 363
Greco de Paula, M. 271

Green, T.R.G. 253
Gutwin, C. 383

Haakma, R. 20
Harrison, M.D. 325
Heftberger, S. 59
Hitch, G. 112

John, B.E. 1
Jorge, J. 129

Koogan Breitman, K. 271

Letessier, J. 228
Lewis, K. 112
Limbourg, Q. 200
López-Jaquero, V. 200, 289
Luyten, K. 77

Macías, J.A. 164
Mariani, J. 112
Mathrick, J. 112
Michotte, B. 200
Molina, J.P. 289
Montero, F. 289
Mori, G. 346
Morley, N.J. 112
Mueller, W. 221

Navarre, D. 179
Nixon, P. 292
Nunes, N.J. 146

Ormerod, T.C. 112

Palanque, P. 179
Paquette, D. 383
Paternò, F. 346
Penner, R. 383

Raisamo, R. 245
Rodden, T. 112

400 Author Index

Sanchez-Segura, M.-I. 1
Schaefer, R. 221
Schneider, K. 383
Schyn, A. 179
Selbach Silveira, M. 271
Specker, M. 224
Stary, C. 59

van Gurp, J. 38
Vanderdonckt, J. 200

Wu, J. 363

Ziegler, J. 224

	Frontmatter
	Usability
	Bringing Usability Concerns to the Design of Software Architecture
	Empirical Usability Testing in a Component-Based Environment: Improving Test Efficiency with Component-Specific Usability Measures
	Software Architecture Analysis of Usability

	Task Modelling
	Support for Task Modeling -- A ''Constructive'' Exploration
	DynaMo-AID: A Design Process and a Runtime Architecture for Dynamic Model-Based User Interface Development
	Using Task Modelling Concepts for Achieving Adaptive Workflows

	Browsing and Searching
	Mixing Research Methods in HCI: Ethnography Meets Experimentation in Image Browser Design
	''Tell Me a Story'' Issues on the Design of Document Retrieval Systems

	Model-Based Approaches
	CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping
	Finding Iteration Patterns in Dynamic Web Page Authoring
	Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts of Multimodal Interactive Systems
	USIXML: A Language Supporting Multi-path Development of User Interfaces
	A Novel Dialog Model for the Design of Multimodal User Interfaces
	Navigation Patterns -- Pattern Systems Based on Structural Mappings

	Ubiquitous Computing
	Spatial Control of Interactive Surfaces in an Augmented Environment
	Manipulating Vibro-Tactile Sequences on Mobile PC

	Bridging Viewpoints
	Formalising an Understanding of User-System Misfits
	Supporting a Shared Understanding of Communication-Oriented Concerns in Human-Computer Interaction: A Lexicon-Based Approach
	A Seamless Development Process of Adaptive User Interfaces Explicitly Based on Usability Properties

	Plastic and Adaptive Interfaces
	More Principled Design of Pervasive Computing Systems
	Towards a New Generation of Widgets for Supporting Software Plasticity: The ''Comet''
	Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand
	Supporting Flexible Development of Multi-device Interfaces

	Groupware
	The Software Design Board: A Tool Supporting Workstyle Transitions in Collaborative Software Design
	Supporting Group Awareness in Distributed Software Development

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

